Posts

Showing posts from January 26, 2019

Fundamental Theorem Of Homomorphism Of Group

Image
Fundamental Theorem Of Homomorphism Of Group :           Let Φ be a homomorphism of G onto G̅ with kernel K .Then G/K ≈ G̅ . Proof:               Let G̅ be the homomorphie image of a group G and Φ be the corresponding homomorphie . Then K is normal subgroup of G .       To prove that G/K ≈ G̅ . If   a ∈ G , the Ka ∈ G /K and Φ(a) ∈G̅  Let ψ : G/K →G̅ such that ψ(Ka) = Φ(a) ∀ a∈G  Where Ka is called right coset and Kb is called left coset. To Show The Mapping ψ is well defined :       i.e if a,b ∈G and Ka = Kb ,then  ψ(Ka) = ψ(Kb)  We have Ka = Kb => ab⁻¹ ∈ K                   => Φ(ab⁻¹) = e̅     (identity of G̅)                =>Φ(a) Φ(b⁻¹) = e̅              => Φ(a) [Φ(b)]⁻¹ = e̅             => Φ(a) [Φ(b)]⁻¹Φ(b) = e̅ Φ(b)            => Φ(a) e̅ = Φ(b)           => Φ(a) = Φ(b)          => ψ(Ka) = ψ(Kb)         => ψ is well defined To Prove ψ is one _one :            We have ψ(Ka) =