Posts

Showing posts from August 19, 2019

Elementary Properties Of The Hypergeometric Function

Image
Elementary Properties Of The Hyper geometric Function :          In this section we consider some properties of the hyper geometric function which are immediate consequences of its definition by the series           ∞   y₁= Σ (α)ₙ(β)ₙxⁿ/n!(γ)ₙ = F(α,β,;γ,x)         n=0                                    γ≠0,-1,-2......    (9) (i) We observe that the terms of the series do not change if the parameters α and β are permuted (interchanged). Hence we obtain the symmetry property             F(α,β;γ;x) = F(β,α;γ;x)  .........(1) (ii) d/dx[ F(α,β;γ;x) ]= αβ F(α+1,β+1;γ+1;x)/γ Proof :                From equation(9), we have                               ∞    F(α,β;γ;x) = 1+Σ  (α)ₙ(β)ₙxⁿ/n!(γ)ₙ                            n=1                                           ∞ Now   d/dx [F(α,β;γ;x)]=Σ (α)ₙ(β)ₙn.xⁿ⁻¹/n!(γ)ₙ                                          n=1                                      ∞                                  = Σ (α)ₙ(β)