Posts

Showing posts from May 4, 2019

Existence And Uniqueness Of Interpolating Polynomial

Image
           Existence And Uniqueness Of Interpolating Polynomial We now examine the existence and uniqueness of a polynomial that interpolates a function f(x) at a given set of distinct nodes x₀,x₁,x₂….xₙ . Note that the interpolation means if i≠j then xᵢ≠xⱼ . Suppose Pₙ(x) given by is the polynomial interpolating f at a set of n+1 distinct points x₀,x₁,x₂……xₙ . Then we have   Pₙ(x) = fᵢ= f(xᵢ) ; i=  0,1,2….n         a₀+a₁x₀+…..+aₙx₀ⁿ = f₀  ⇒   a₀ +  a₁x₁ + ….+aₙx₁ⁿ = f₁        ………………………………..       }...(2.2.1)     a₀ + a₁xₙ + …….+aₙxₙⁿ = fₙ  This is a system of n+1 linear equations in n+1 unknowns : a₀,a₁,a₂…..aₙ; hence the system will have a unique solution if the determinant Δ =  DET(f₀,f₁,......fₙ) ≠ 0 ..........(2.2.2)   Indeed , the value of the determinant Δ is not zero since       Δ = Π (xᵢ - xⱼ)   0≤j≤i≤n         xᵢ ≠ xⱼ for i≠ j as the points x₀,x₁,....xₙ are distinct .         Therefore an unique interpolating polynomial exists whose co_ effi