Posts

Showing posts from February 28, 2019

Lagrangian Interpolation Formula

Image
Lagrangian Interpolation Formula :        Let y = f(x) be a real valued function which is defined in an interval [a,b] . Let  x₀ , x₁ ,x₂ ,............xₙ be n+1 distinct points in that interval at which the respective values y₀ ,y₁,y₂ ............yₙ are tabulated.      Now our aim is to construct a polynomial Φ(x) of degree ≤ n , which interpolates f(x) such that       Φ(xᵢ) = y(xᵢ) , i = 1,2,3,.......,n .........(1)    Let us suppose that the polynomial Φ(x)                                   n be given by Φ(x) = Σ  lᵢ(x) y(xᵢ)  .........(2)                                  i= 0      where each lᵢ(x) is a polynomial of degree ≤n in xᵢ , called  Lagrangian function.      The function given in equation (1) if each lᵢ (x) satisfied lᵢ(xⱼ) = 0 where i ≠ j  ,lᵢ(xⱼ)=1  when i=j  .........(3) Now ,   the polynomial lᵢ(x) vanishes at the (n+1) points xₒ , x₁ , ........., xₙ therefore , we can write this polynomial in the following form lᵢ(x) = cᵢ (x-x₀)(x-x₁).......