Posts

Showing posts from January 25, 2020

Fourier Series Of Even And Odd Functions

Image
Definition :         A function f is said to be an even function if f(x) = f(-x) for all x and it is odd if   f(-x) = -f(x) . Examples :           Sin kx , x,x³ and any power of x are all odd functions where as Cos kx , x ,1,x² and any even power of x are even functions .     The following properties of even and odd functions are easy to check           a                                      a (i)     ∫ f(x) = 0 if f is odd = 2∫ f(x) dx          -a                                     0                                         ...