Posts

Showing posts from January 25, 2020

Fourier Series Of Even And Odd Functions

Image
Definition :         A function f is said to be an even function if f(x) = f(-x) for all x and it is odd if   f(-x) = -f(x) . Examples :           Sin kx , x,x³ and any power of x are all odd functions where as Cos kx , x ,1,x² and any even power of x are even functions .     The following properties of even and odd functions are easy to check           a                                      a (i)     ∫ f(x) = 0 if f is odd = 2∫ f(x) dx          -a                                     0                                                if f is even . (ii) The product of even and odd function            are characterised by        even * odd = odd        even * even = even        odd * odd = even .     Now suppose f is an even periodic function with period 2π . Then since the sine function is odd , f(x) sin nx is odd and f(x) cos nx is even  .   So by (i)                       π       bₙ = 1/π ∫ f(x) sin nx = 0 ,