Posts

Showing posts from January 28, 2019

Three Theorems of Isomorphism

Three Theorems of Isomorphism: First Theorem of Isomorphism:              If f: G →G' be an onto homomorphism with kernel K = ker f , then G/K ≈ G'  In other words , every homomorphic image of a group G is isomorphic to a quotient group of G.  Proof :       Define a map Φ : G/K →G' such that ,                                       Φ (Ka) = f(a) , a∈G We Show Φ  is an isomorphism :        That Φ is well defined follows by                            Ka = Kb                       ⇒ab⁻¹ ∈K = Ker f                      ⇒f(ab⁻¹) = e'                      ⇒f(a) (f(b))⁻¹ = e'                     ⇒f(a)  = f(b)                      ⇒Φ(Ka) = Φ(Kb)  By retracing the steps backward , we will prove that Φ is one _one . Again as          Φ(KaKb) = Φ(Kab) = f(ab) = f(a)f(b) = Φ(Ka) Φ(Kb)          we find Φ is a homomorphism . To Check That Φ Is Onto :           Let g' ∈ G' be any element . Since