Posts

Showing posts from April 9, 2019

Trapezoidal Rule

Image
Trapezoidal Rule :                   Let us suppose that the interval (a,b) be divided into n equal subintervals such that a = x₀,x₁.......xₙ₋₁,xₙ = b .      We know from Newton's Forward Difference Interpolation Formula that    y = y₀ + sΔy₀ + s(s-1)/2!  Δ²y₀                      +  s(s-1)(s-2)/3!  Δ³y₀.....                                                           ..............(1) Where xₙ = x₀ + nh and  x= x₀ + sh ......(2) Integrating both sides of equation(1) between x₀ and xₙ , we get         xₙ             xₙ         ∫ y dx = ∫ (y₀+sΔy₀+s(s-1)/2!  Δ²y₀       x₀             x₀                                       + s(s-1)(s-2)/3!  Δ³y₀+....)dx      Using equation (2) in the above expression ,we get      xₙ               n      ∫ y dx = h∫ (y₀+sΔy₀+s(s-1)/2!  Δ²y₀      x₀              0                                +s(s-1)(s-2)/3!  Δ³y₀+....)ds      xₙ or ∫ y dx = nh[y₀ +n/2 Δy₀ +n(2n-3)/12  Δ²y₀     x₀