Posts

Showing posts from April 6, 2019

Mean Value Theorem Of Integrability

Image
Mean Value Theorem Of Integrability :   First Mean Value Theorem :          If a function f is continuous on [a,b] then ∃ a number ξ in [a,b] such that          b         ∫ f dx = f(ξ) (b - a)         a f is continuous , therefore f ∈ R on [ a,b ] . Proof :          Given that function f is continuous on  [ a, b] . Let m , M be the infimum and supremum of f in [ a,b ] . Then clearly       we have                                      b                 m( b - a ) ≤ ∫ f dx ≤ M( b - a )                                     a So , ∃ a number μ ∈ [ m, M ] such that           b          ∫ f dx = μ( b - a ) ........(1)          a As f is continuous on [ a,b ] , it attains every value between its bounds m and M .  So ∃ a number ξ ∈ [ a,b ] such that                       f(ξ) = μ .........(2)    Using equations (2) in (1) , we get                         b                       ∫ f dx = f(ξ) (b - a )