Posts

Showing posts from June 13, 2019

Fourier Series For Even And Odd Functions

Image
Fourier Series For Even And Odd Functions : Even Function :             If f is an even function, i.e ,  f(-x) =f(x) , ∀ x , then f cos nx is an even and f sin nx is an odd function and therefore                        π        aₙ = 1/π ∫ f cos nx dx                       -π                         0                        π             = 1/π [∫ f cos nx dx + ∫ f cos nx dx]                       -π                        0                       π             = 2/π ∫ f cos nx dx .........(1)                       0                      π       bₙ = 1/π ∫ f sin nx dx =0                     -π      So , the Fourier Series of an even function consists of terms of cosines only and the coefficients aₙ may be computed from equation(1) .        Also , since for an even function ,           f(0+) = f(0-) = f(0) and   f(-π+0) = f(π-0)  the sum of the series f(0) at 0 or ±(even multiple of π) , and is f(π-) at ±π or ±(odd multiple of