Posts

Showing posts from April 13, 2019

Newton_Cotes Quadrature Formula

Image
Newton_Cotes Quadrature Formula:                  b     Let I = ∫ f(x) dx   ............(1)                 a Where f(x) takes the values y₀,y₁,y₂.....yₙ for x= x₀,x₁,x₂.........xₙ   Let us divide the interval (a,b) into n sub_intervals of width h so that  x₀=a , x₁= x₀+h , x₂=x₀+2h ......xₙ=x₀+nh=b               x₀+nh Then I= ∫ f(x) dx   Put x=x₀+rh ⇒dx =hdr               x₀                  n           = h ∫ f(x₀+rh) dr                 0                 n          = h ∫ [y₀+rΔy₀+r(r-1)/2! Δ²y₀                 0                              + r(r-1)(r-2)/3!  Δ³y₀            + r(r-1)(r-2)(r-3)/4!  Δ⁴y₀            + r(r-1)(r-2)(r-3)(r-4)/5!  Δ⁵y₀         + r(r-1)(r-2)(r-3)(r-4)(r-5)/6!   Δ⁶y₀ +.....]dr [Using Newton's Forward Interpolation Formula] Now integrating term by term  we get  x₀+nh     ∫ f(x) dx = nh[y₀+n/2  Δy₀ +n(2n-3)/12 Δ²y₀    x₀                               + n(n-2)²/24  Δ³y₀