Posts

Showing posts from April 5, 2019

Fundamental Theorems Of Integral Calculus

Image
Fundamental Theorems Of Integral Calculus : First Fundamental Theorem Of Integral Calculus : Theorem 1 :                 If a function f is bounded and integrable on [ a,b ] , then the function F defined as                    x                            F(x) = ∫ f(t) dt , a≤x≤b                                         0 is continuous on [ a,b ] and further more , if f is continuous at a point of [ a,b ] , then F is derivable at c and F'(c) = f(c) . Proof :           It is given that the function f is bounded . Then by definition ∃ a number k such that |f(x)|≤ k for x ∈ [ a,b ] ......(1)       Let x₁ , x₂ ∈[ a,b ] such that a≤x₁≤x₂≤b .                                             x₂             x₁  Then |F(x₂) - F(x₁) | = |∫ f(t) dt - ∫ f(t) dt |                                            a               a                                    x₂              a                              = |∫ f(t) dt + ∫ f(t) dt |