Half Range Series
  Half Range Series  :               With the help of the Main Theorem and those of even and odd functions , we now consider the expansion of a function over the interval [0,π] in terms of (i) sine terms only , (ii) cosine terms only .       (i) The Sine Series  :                     If a function f is bounded , integrable and piecewise monotonic in [0,π] , then the sum of the sine series                                                           π       Σ bₙ sin nx , where bₙ = 2/π ∫f sin nx dx                                                         0   is equal to , 1/2 [f(x-) + f(x+)] at every point x between 0 and π , and is equal to 0 , when x=0 ,π ...