Posts

Showing posts from October 13, 2019

The Shifting Theorem

Image
The Shifting Theorem :            If L{f(t)}= f̅(p), then           L{eᵃᵗf(t)} = f̅(p-a) , p>a Proof :     By definition                         ∞             f̅(p) = ∫ e⁻ᵖᵗ f(t) dt                       0                                    ∞ Therefore, f̅(p-a) = ∫ e^-(p-a)t f(t) dt                                   0                                  ∞                               = ∫ e⁻ᵖᵗ[eᵃᵗ f(t)] dt                                  0                               = L{eᵃᵗ f(t)}. Corollary :          L{e⁻ᵃᵗ f(t)} = f̅(p+a); (p>-a). This follows immediately from the above theorem by writing -a for a. Example _1 :         Find the transform of eᵃᵗ tⁿ . Solution :            Since  L{tⁿ} = n!/pⁿ⁺¹ by using the above theorem , we find            L{eᵃᵗ tⁿ} = n!/(p-a)ⁿ⁺¹ which is the required solution . Example_2 :      Find the Laplace Transformation of                 f(t) =