The Shifting Theorem
The Shifting Theorem : If L{f(t)}= f̅(p), then L{eᵃᵗf(t)} = f̅(p-a) , p>a Proof : By definition ∞ f̅(p) = ∫ e⁻ᵖᵗ f(t) dt 0 ∞ Therefore, f̅(p-a) = ∫ e^-(p-a)t f(t) dt 0 ∞ = ∫ e⁻ᵖᵗ[eᵃᵗ f(t)] dt 0 = L{eᵃᵗ f(t)}. Corollary : L{e⁻ᵃᵗ f(t)} = f̅(p+a); (p>-a). This follows immediately from the above theorem by writing -a for a. Example _1 : Find the transform of eᵃᵗ tⁿ . Solution : Since L{tⁿ} = n!/pⁿ⁺¹ by using the above theorem , we find L{eᵃᵗ tⁿ} = n!/(p-a)ⁿ⁺¹ which is the required solution . Example_2 : Find the Laplace Transformation of f(t) =