Posts

Showing posts from April 8, 2019

Tests For Uniform Convergence

Image
Tests For Uniform Convergence : Theorem 1 (Mₙ _ Test) :                  Let <fₙ> be a sequence of function defined on a metric space X .      Let  lim  fₙ(x) = f(x)   ∀ x ∈ X and let            n-->∞          Mₙ = Sup {|fₙ(x) - f(x)| : x∈ X}   Then <fₙ> converges uniformly to f iff     Mₙ-->0 as n-->∞. Proof Of Necessary Part :          Let us suppose the sequence <fₙ> of functions converges uniformly to f on X . Then by definition , for a given ε > 0 ∃ a positive integer m (independent of x)     such that  n≥ m ⇒|fₙ(x) - f(x)| < ε ∀ x∈X    Also , Mₙ is the supremum of |fₙ(x) - f(x)|. Therefore |fₙ(x) - f(x)| < ε ∀ n≥m  ∀ x∈X         ⇒ Mₙ = Sup |fₙ(x) - f(x)| < ε  ∀ n≥ m                       x∈X          ⇒   |fₙ(x) - f(x)| ≤ Mₙ <ε  ∀ n≥m ,∀ x∈X        ⇒   <fₙ> converges uniformly to f on X . For Example :             Show that the sequence <fₙ(x)> where  fₙ