Posts

Showing posts from August 25, 2019

Integral Representation Of Confluent Hypergeometric Function

Image
Integral Representation Of Confluent Hypergeometric Function :   Theorem :             If γ>α>0 , then the function F(α;γ;x) can be expressed as                                1    Γ(γ)/Γ(γ)Γ(γ-α)  ∫ eˣᵗ t^(α-1)(1-t)^(γ-α-1) dt.                                0 Proof :           We know that    B(α+n,γ-α)/B(α,γ-α) =         Γ(α+n)Γ(γ-α)/Γ(γ+n) / Γ(α)Γ(γ-α)/Γ(γ)      = Γ(α+n)/Γ(α) / Γ(γ+n)/Γ(γ) But Γ(α+n)/Γ(α) = (α)ₙ and Γ(γ+n)/Γ(γ) = (γ)ₙ Therefore, (α)ₙ/(γ)ₙ  = B(α+n,γ-α)/Β(α,γ-α)                                   1   = Γ(γ)/Γ(α)Γ(γ-α) ∫ t^(α+n-1) (1-t)^(γ-α-1) dt                                 0                             ∞ Now  F(α;γ;x) = Σ (α)ₙxⁿ/n!(γ)ₙ                            n=0                                             = Γ(γ)/Γ(α)Γ(γ-α)                   ∞           1                   Σ xⁿ/n! ∫ t^(α-1) tⁿ(1-t)^(γ-α-1) dt                 n=0        0 Interchanging the order of summa