Posts

Showing posts from November 19, 2019

Laplace Transform Of Periodic Functions

Image
Laplace Transform Of Periodic Functions : Definition :            A function f(t) is said to be periodic , with a period ' l ' , if it satisfies the functional equation                   f(t±l) = f(t)     So, if t>0 , a periodic function f(t) can be written as            f(t) = f(t + nl) , n= 0,1,2.. ......(1)      For example sin t = sin(t+2πn) , n=0,1,2.... is a periodic function with period 2π .       In case a function f(t) is periodic , the Laplace transform can be expressed as an integral over one cycle of the function instead of an integral over an infinite range.            The transform of equation(1) is                       ∞           f̅(p) = ∫ e⁻ᵖᵗ f(t) dt                      a                        l     2l   3l                  = [ ∫ + ∫ + ∫  .....]e⁻ᵖᵗ f(t) dt                       0     l    2l                   ∞ (n+1)l                 = Σ    ∫  e⁻ᵖᵗ f(t) dt   ............(2)