Posts

Showing posts from April 19, 2020

Cauchy Riemann Equations For Analytic Function

Image
Cauchy - Riemann Equations :- Cauchy-Riemann Equation Necessary Conditions For A Function To Be Analytic : Cauchy-Riemann Equation Statement :- Cauchy-Riemann Equation     The necessary conditions for  w = f(z) = u(x,y) + i v(x,y) to be analytic (differentiable) at any point z = x + i y of its domain D is that the four patial derivatives ∂u/∂x , ∂u/∂y ,∂v/∂x ,∂v/∂y should exists and satisfy the C-R partial differential equations   .          ∂u/∂x = ∂v/∂y  and  ∂u/∂y = - ∂v/∂x Proof :- Cauchy-Riemann Equation       Let f(z) = u(x,y) + i v(x,y) be analytic at any point z of its domain , then               f'(z) = lim     f(z+δz) - f(z) / δz                         δx-->0         exists and is unique . i.e it is independent of the path along which   δz -->0   Let z = x+ iy    ∴ δz = δx + i δy and as δz-->0 then δx , δy --> 0 ∴   f'(z) =    lim  [u(x+δx ,y+δy) + iv(x+δx,y+δy)]/δx+iδy