Posts

Showing posts from June 8, 2019

Periodic Functions Of Fourier Series

Image
Periodic Functions Of Fourier Series :              Generally, periodic functions are the functions which returns the same value in regular interval of time . But in trigonometric functions , it returns the same value in the time interval of 2π radian .   For example :               The best example to describe periodic functions is sine function i.e,        sin(x+2π) = sinx         So as discussed before Fourier series is generated by these types of periodic functions like sine and cosine functions . Theorem Related To Periodic Function of Fourier Series :         For a periodic function of period 2π , prove that              β          β+2π     (i)   ∫ f dx = ∫   f dx ,            α          α+2π             π           α+2π    (ii)   ∫ f dx = ∫  f dx ,           -π           α              π                 π     (iii)  ∫ f(x) dx = ∫ f(γ+x) dx ,            -π                -π                       α,β,γ being any