Posts

Showing posts from August 22, 2019

Integral Formula For The Hypergeometric Series

Image
Integral Formula For The  Hypergeometric Series : Theorem :              The hypergeometric function F(α,β;γ;x) can be represented by                                  [Γ(γ)/Γ(β)Γ(γ-β)]            1           ∫(1-t)^(γ-β-1) t^(β-1) (1-xt)^-α dt           0 Proof :                We know that   (β)ₙ = β(β+1)...(β+n-1) = Γ(β+n)/Γ(β) Similarly        (γ)ₙ = Γ(γ+n)/Γ(γ) Again           B(m,n) = Γ(m)Γ(n)/Γ(m+n) Consider,    B(β+n,γ-β) / B(β,γ-β)      = [Γ(β+n)Γ(γ-β)/Γ(γ+n)]/[Γ(β)Γ(γ-β)/Γ(γ)    = [Γ(β+n)/Γ(β)] / [Γ(γ+n)/Γ(γ)] Thus    (β)ₙ/(γ)ₙ = B(β+n, γ-β) / B(β, γ-β)  From the definition of Beta function , we have                    1    B(p,q) = ∫ tᵖ⁻¹ (1-t)^(q-1) dt , t<1.                  0 Therefore,                                                  (β)ₙ/(γ)ₙ = 1/B(β, γ-β)                          1                        ∫ t^(β+n-1) (1-t)^(γ-β-1) dt                         0