Posts

Showing posts from March 12, 2019

Derivation of Newton's Forward Difference Interpolation Formula

Image
Newton's Forward Difference Interpolation Formula:      Let y = f(x) be a function of x and let us suppose that yᵢ = f(xᵢ) ...(1) for i = 1,2,3,.....,n satisfying the condition xᵢ = x₀+ih where  'h' is the interval of difference .        Now our aim is to constuct a function Φ(x) of degree not higher than n such that   Φ(xᵢ) = yᵢ   ............(2)           Since Φ(x) is a polynomial of degree n  then we can write Φ(x) = a₀ + a₁(x-x₀) + a₂(x-x₀)(x-x₁)     +                                 a₃(x-x₀)(x-x₁)(x-x₂)+......                   + aₙ(x-x₀)(x-x₁)(x-x₂).....(x-xₙ₋₁)...(3) Let us find the value of a₀,a₁,a₂.....aₙ satisfying the equations (2) and (3) From equation (2) , we get Φ(x₀) = y₀  From equation (3) , we get Φ(x₀) = a₀         so , a₀ = y₀ ...........(4) From equation (2) we get Φ(x₁) = y₁ From equation (3) we get Φ(x₁) = a₀+a₁(x₁-x₀) Therefore  y₁ = a₀ + a₁(x₁-x₀)              ⇒y₁ = y₀ + a₁h    as a₀=y₀ and h = x₁-x₀               ⇒