Posts

Showing posts from January 2, 2020

Orthogonality Of Eigen Functions

Image
Orthogonality Of Eigen Functions :- Definition :          Two distinct continuous functions f   and φ on [a,b] are said to be orthogonal with respect to a continuous weight function γ if                           b                          ∫ f(x) φ(x) γ(x) dx = 0  ...(14)                          a    An infinite set of functions defined on [a,b] is to be an orthogonal system with respect to the weight function γ on [a,b] if every pair of distinct functions of the set are orthogonal with respect to γ .  Example :         The set of functions {φₙ} ,      where φₙ(x) = sin nx , n=1,2,.... on [0,π] is an orthogonal system with respect to the weight function having the constant value 1 on [0,π] , for                 π                ∫ (sin mx)(sin nx)(1) dx               0                                                                             π   =[sin(m-n)x / 2(m-n) - sin(m+n)x / 2(m+n)]