Lagrangian Interpolation Formula

Lagrangian Interpolation Formula :

       Let y = f(x) be a real valued function which is defined in an interval [a,b] . Let 
x₀ , x₁ ,x₂ ,............xₙ be n+1 distinct points in that interval at which the respective values y₀ ,y₁,y₂ ............yₙ are tabulated.

     Now our aim is to construct a polynomial Φ(x) of degree ≤ n , which interpolates f(x) such that 

     Φ(xᵢ) = y(xᵢ) , i = 1,2,3,.......,n .........(1)

   Let us suppose that the polynomial Φ(x)
                                  n
be given by Φ(x) = Σ  lᵢ(x) y(xᵢ)  .........(2)
                                 i= 0

     where each lᵢ(x) is a polynomial of degree ≤n in xᵢ , called  Lagrangian function.

     The function given in equation (1) if each lᵢ (x) satisfied lᵢ(xⱼ) = 0 where i ≠ j  ,lᵢ(xⱼ)=1  when i=j  .........(3)
Now ,
  the polynomial lᵢ(x) vanishes at the (n+1) points xₒ , x₁ , ........., xₙ therefore , we can write this polynomial in the following form

lᵢ(x) = cᵢ (x-x₀)(x-x₁)........(x-xᵢ₋₁)(x-xᵢ₊₁)....(x-xₙ)
                                                              ........(4)

where cᵢ's are constant co_efficients

putting x = xᵢ in equation (4) , we get

lᵢ(xᵢ) =cᵢ(xᵢ-x₀)(xᵢ-x₁).....(xᵢ-xᵢ₋₁)(xᵢ-xᵢ₊₁)...(xᵢ-xₙ)

or, 1 = cᵢ(xᵢ-x₀)(xᵢ-x₁).....(xᵢ-xᵢ₋₁)(xᵢ-xᵢ₊₁)
                                       ......(xᵢ-xₙ)     as lᵢ(xᵢ) =1

or,cᵢ = 1/(xᵢ-x₀)(xᵢ-x₁)...(xᵢ-xᵢ₋₁)(xᵢ-xᵢ₊₁)...(xᵢ-xₙ)
                                                         ..........(5)

putting the value of cᵢ from equation (5) in equation (4) , we get

lᵢ(x) = (x-x₀)(x-x₁)...(x-xᵢ₋₁)(x-xᵢ₊₁) /
             (xᵢ-x₀)(xᵢ-x₁)....(xᵢ-xᵢ₋₁)(xᵢ-xᵢ₊₁).....(xᵢ-xₙ)
                                                               .......(6)

putting the values of lᵢ(x) from equation (6) in equation (2) we get ,
         
Φ(x) =
  n
  Σ (x-x₀)(x-x₁)...(x-xᵢ₋₁)(x-xᵢ₊₁)....(x-xₙ)   y(xᵢ)  /
 i=1    (xᵢ-x₀)(xᵢ-x₁)...(xᵢ-xᵢ₋₁)(xᵢ-xᵢ₊₁)...(xᵢ-xₙ)
                                                  .......(8)

Equation (8) is known as Lagrangian Interpolation Formula.

For More :



About Scientist :


Joseph-Louis Lagrange was an Italian Enlightenment Era mathematician and astronomer. He made significant contributions to the fields of analysis, number theory, and both classical and celestial mechanics. 

Comments

Popular posts from this blog

Derivation Of Composite Trapezoidal Rule

PFAFFIAN Differential Equations And It's Solutions

Complete Integral Of Partial Differential Equations