Mean Value Theorem Of Integrability

Mean Value Theorem Of Integrability :


  First Mean Value Theorem :


         If a function f is continuous on [a,b] then ∃ a number ξ in [a,b] such that 
        b
        ∫ f dx = f(ξ) (b - a)
        a

f is continuous , therefore f ∈ R on [ a,b ] .

Proof :


         Given that function f is continuous on  [ a, b] . Let m , M be the infimum and supremum of f in [ a,b ] . Then clearly       we have
                                     b
                m( b - a ) ≤ ∫ f dx ≤ M( b - a )
                                    a

So , ∃ a number μ ∈ [ m, M ] such that 
         b
         ∫ f dx = μ( b - a ) ........(1)
         a

As f is continuous on [ a,b ] , it attains every value between its bounds m and M . 

So ∃ a number ξ ∈ [ a,b ] such that 

                     f(ξ) = μ .........(2)

   Using equations (2) in (1) , we get 
                       b
                      ∫ f dx = f(ξ) (b - a ) 
                      a

Hence the proof .

The Generalised First Mean Value Theorem :


       If f and g are integrable on [ a,b ] and ∃ a number μ lying between the bounds of f such that 
                          b                 b
                          ∫ fg dx = μ∫ g dx
                          a                 a

Proof : 


           Let us suppose that g be positive over [ a,b ] and m , M be the infimum and supremum of f . Now for all x ∈ [ a,b ]        we have  m ≤ f(x) ≤ M 

   ⇒ m g(x) ≤ f(x) g(x) ≤ M g(x)
          b                  b                            b
So m ∫ g(x) dx ≤ ∫ f(x) g(x) dx ≤ M∫ g(x) dx
          a                 a                             a

                                             when b ≥ a

Let μ be a number lying between m and M , then 
         b                  b
         ∫ fg dx = μ ∫ g dx       (Proved)
         a                  a


Comments

Popular posts from this blog

Accuracy Of Numbers

PFAFFIAN Differential Equations And It's Solutions

Complete Integral Of Partial Differential Equations