Tests For Uniform Convergence
Tests For Uniform Convergence :
Theorem 1 (Mₙ _ Test) :
Let <fₙ> be a sequence of function defined on a metric space X .
Let lim fₙ(x) = f(x) ∀ x ∈ X and let
n-->∞
Mₙ = Sup {|fₙ(x) - f(x)| : x∈ X}
Then <fₙ> converges uniformly to f iff Mₙ-->0 as n-->∞.
Proof Of Necessary Part :
Let us suppose the sequence <fₙ> of functions converges uniformly to f on X . Then by definition , for a given ε > 0 ∃ a positive integer m (independent of x) such that n≥ m ⇒|fₙ(x) - f(x)| < ε ∀ x∈X
Also , Mₙ is the supremum of |fₙ(x) - f(x)|.
Therefore |fₙ(x) - f(x)| < ε ∀ n≥m ∀ x∈X
⇒ Mₙ = Sup |fₙ(x) - f(x)| < ε ∀ n≥ m
x∈X
⇒ |fₙ(x) - f(x)| ≤ Mₙ <ε ∀ n≥m ,∀ x∈X
⇒ <fₙ> converges uniformly to f on X .
For Example :
Show that the sequence <fₙ(x)> where fₙ(x) = nx (1-x)ⁿ does not converge uniformly on [0,1] .
Solution :
Here , we have
f(x) = lim fₙ(x) = lim nx/(1-x)⁻ⁿ
n-->∞ n-->∞
= lim x/-(1-x)⁻ⁿlog(1-x)
n-->∞
[By L. Hospital's Rule i.e lim f(x)/g(x)
= lim f'(x)/g'(x)
when the form is indefinite or ∞/∞ or 0/0 ]
= lim -x(1-x)ⁿ / log(1-x)
n-->∞
= 0 [∵ (1-x)ⁿ --> 0 ∀ x∈ [0,1] ]
⇒ f(x) = 0 ∀ x∈[0,1]
Now Mₙ = Sup{|fₙ(x) - f(x)|: x∈ [0,1]}
= Sup { nx (1-x)ⁿ : x ∈[0,1]}
= Sup (1-x)ⁿ nx ∀ x∈ [0,1]
Therefore , Mₙ ≥ n. 1/n (1- 1/n)ⁿ
( Taking x = 1/n ∈ [0,1])
= (1- 1/n)ⁿ --> 1/e as n-->∞
Hence by Mₙ _ test <fₙ> does not converge uniformly on [0,1] . Therefore , 0 is a point of non uniform convergence , since
Comments
Post a Comment
If Any Doubt Ask Me