Newton_Cotes Quadrature Formula
Newton_Cotes Quadrature Formula:
b
Let I = ∫ f(x) dx ............(1)
a
Where f(x) takes the values y₀,y₁,y₂.....yₙ for x= x₀,x₁,x₂.........xₙ
Let us divide the interval (a,b) into n sub_intervals of width h so that
x₀=a , x₁= x₀+h , x₂=x₀+2h ......xₙ=x₀+nh=b
x₀+nh
Then I= ∫ f(x) dx Put x=x₀+rh ⇒dx =hdr
x₀
n
= h ∫ f(x₀+rh) dr
0
n
= h ∫ [y₀+rΔy₀+r(r-1)/2! Δ²y₀
0
+ r(r-1)(r-2)/3! Δ³y₀
+ r(r-1)(r-2)(r-3)/4! Δ⁴y₀
+ r(r-1)(r-2)(r-3)(r-4)/5! Δ⁵y₀
+ r(r-1)(r-2)(r-3)(r-4)(r-5)/6! Δ⁶y₀ +.....]dr
[Using Newton's Forward Interpolation Formula]
Now integrating term by term
we get
x₀+nh
∫ f(x) dx = nh[y₀+n/2 Δy₀ +n(2n-3)/12 Δ²y₀
x₀
+ n(n-2)²/24 Δ³y₀
+ (n⁵/5 - 3n³/2 + 11n²/3 - 3n ) Δ⁴y₀/4!
+(n⁵/6 - 2n⁴ + 35n³/4 - 50n²/3 - 12n )Δ⁵y₀/5!
+(n⁶/7 - 15n⁵/6 + 17n⁴ - 225n³/4 + 274n²/3 -60n) Δ⁶y₀/6! +.....] ......(2)
This is known as Newton _ Cotes Quadrature Formula .
Note:
The error in the quadrature formula is given by
b b
E = ∫ y dx - ∫ P(x) dx
a a
Where P(x) is polynomial representing the function y = f(x) in the interval [a,b].
Comments
Post a Comment
If Any Doubt Ask Me