Newton_Cotes Quadrature Formula

Newton_Cotes Quadrature Formula:



                 b
    Let I = ∫ f(x) dx   ............(1)
                a

Where f(x) takes the values y₀,y₁,y₂.....yₙ for x= x₀,x₁,x₂.........xₙ  

Let us divide the interval (a,b) into n sub_intervals of width h so that 

x₀=a , x₁= x₀+h , x₂=x₀+2h ......xₙ=x₀+nh=b
              x₀+nh
Then I= ∫ f(x) dx   Put x=x₀+rh ⇒dx =hdr
              x₀
                 n
          = h ∫ f(x₀+rh) dr
                0
                n
         = h ∫ [y₀+rΔy₀+r(r-1)/2! Δ²y₀ 
               0

                             + r(r-1)(r-2)/3!  Δ³y₀ 

          + r(r-1)(r-2)(r-3)/4!  Δ⁴y₀ 

          + r(r-1)(r-2)(r-3)(r-4)/5!  Δ⁵y₀

        + r(r-1)(r-2)(r-3)(r-4)(r-5)/6!   Δ⁶y₀ +.....]dr

[Using Newton's Forward Interpolation Formula]

Now integrating term by term 

we get 
x₀+nh
    ∫ f(x) dx = nh[y₀+n/2  Δy₀ +n(2n-3)/12 Δ²y₀
   x₀

                              + n(n-2)²/24  Δ³y₀ 

              + (n⁵/5 - 3n³/2 + 11n²/3 - 3n ) Δ⁴y₀/4!

     +(n⁵/6 - 2n⁴ + 35n³/4 - 50n²/3 - 12n )Δ⁵y₀/5!

 +(n⁶/7 - 15n⁵/6 + 17n⁴ - 225n³/4 + 274n²/3                     -60n) Δ⁶y₀/6! +.....] ......(2)



This is known as Newton _ Cotes Quadrature Formula . 

Note: 


             The error in the quadrature formula is given by 
                  b            b
           E = ∫ y dx - ∫ P(x) dx 
                 a            a

       Where P(x) is polynomial representing the function y = f(x) in the interval [a,b].


Comments

Popular posts from this blog

Derivation Of Composite Trapezoidal Rule

PFAFFIAN Differential Equations And It's Solutions

Complete Integral Of Partial Differential Equations