Fourier Series For Even And Odd Functions

Fourier Series For Even And Odd Functions :


Even Function:


            If f is an even function, i.e ,
 f(-x) =f(x) , ∀ x , then f cos nx is an even and f sin nx is an odd function and therefore 
                      π
       aₙ = 1/π ∫ f cos nx dx 
                     -π
                        0                        π
            = 1/π [∫ f cos nx dx + ∫ f cos nx dx]
                      -π                        0
                      π
            = 2/π ∫ f cos nx dx .........(1)
                      0
                     π
      bₙ = 1/π ∫ f sin nx dx =0
                    -π

     So , the Fourier Series of an even function consists of terms of cosines only and the coefficients aₙ may be computed from equation(1) .

       Also , since for an even function , 

         f(0+) = f(0-) = f(0)

and   f(-π+0) = f(π-0) 

the sum of the series f(0) at 0 or ±(even multiple of π) , and is f(π-) at ±π or ±(odd multiple of π) .

Odd Functions :


             If f is an odd function , i.e , 
f(-x)= -f(x) , ∀ x , then f cos nx is an odd and f sin nx an even function and therefore 
                         π
          aₙ = 1/π ∫ f cos nx dx = 0
                        -π
                     π                              π
     bₙ = 1/π ∫ f sin nx dx = 2/π ∫ f sin nx dx
                   -π                              0
                                                        .....(2)

   So the Fourier Series of an odd function consists of sine terms only and the coefficients bₙ may be calculated from equation(2) . Also for an odd function

           f(0-) = 0 = f(0+)

and

        f(-π+0) = -f(π-0)

The sum of the series is 0 at x = 0 (or multiple of π) .

 

 Example :


            Find the Fourier Series generated by the periodic function |x| of period 2π .
Also compute the value of series at 0 , 2π ,
-3π .

Solution :


           The function is monotone and continuous on [-π,π] . Moreover it is an even function and therefore the Fourier Series will consist of cosine terms only .

   The function may be restated as 
                              { -x , for -π≤x≤0
                    f(x) = 
                              { x , for 0≤x≤π 
                            0              π
           a₀ = 1/π [ ∫ -x dx + ∫ x dx 
                          -π              0
                          π
                = 2/π ∫ x dx = π
                         0
                           π
            aₙ = 2/π ∫ x cos nx dx
                          0
                 = 2/πn²  (cos nπ -1)
                    { 0 ,    for n even
                 =
                    { -4/πn² , for n odd

We , thus , obtain the series

    f(x) = π/2 - 4/π [cosx / 1² + cos3x / 3² +...]

     The series converges at all points and its sum is equal to the given function .

     Sum of the series at 2π is the same as at 0 .

  At 0 ,

         0 = π/2 - 4/π [1/1² + 1/3² +......]

 ⇒     1+1/3² +1/5² +.....= π²/8

 At -3π (same as at π) ,

            π = π/2+4/π [1+1/3²+.....]

 ⇒ 1+1/3²+ ......= π²/8 , same as above .

  which is the required solution .

" Don't listen to response , listen to                 understand "

Comments

Popular posts from this blog

Derivation Of Composite Trapezoidal Rule

PFAFFIAN Differential Equations And It's Solutions

Complete Integral Of Partial Differential Equations