Elementary Properties Of The Hypergeometric Function
Elementary Properties Of The Hyper geometric Function:
In this section we consider some properties of the hyper geometric function which are immediate consequences of its definition by the series
∞
y₁= Σ (α)ₙ(β)ₙxⁿ/n!(γ)ₙ = F(α,β,;γ,x)
n=0 γ≠0,-1,-2...... (9)
(i) We observe that the terms of the series do not change if the parameters α and β are permuted (interchanged). Hence we obtain the symmetry property
F(α,β;γ;x) = F(β,α;γ;x) .........(1)
(ii) d/dx[ F(α,β;γ;x) ]= αβ F(α+1,β+1;γ+1;x)/γ
(i) We observe that the terms of the series do not change if the parameters α and β are permuted (interchanged). Hence we obtain the symmetry property
F(α,β;γ;x) = F(β,α;γ;x) .........(1)
(ii) d/dx[ F(α,β;γ;x) ]= αβ F(α+1,β+1;γ+1;x)/γ
Proof :
From equation(9), we have
∞
F(α,β;γ;x) = 1+Σ (α)ₙ(β)ₙxⁿ/n!(γ)ₙ
n=1
∞
Now d/dx [F(α,β;γ;x)]=Σ (α)ₙ(β)ₙn.xⁿ⁻¹/n!(γ)ₙ
n=1
∞
= Σ (α)ₙ(β)ₙxⁿ⁻¹/(n-1)!(γ)ₙ
n=1
On putting k=n-1, the right hand side becomes
∞
Σ (α)ₖ₊₁(β)ₖ₊₁ xᵏ/k!(γ)ₖ₊₁
k=0
We know that
(α)ₖ₊₁ = α(α+1)....(α+k)
Also (α+1)ₖ = (α+1)(α+2)...(α+k)
Thus (α)ₖ₊₁ = α(α+1)ₖ
and hence
d/dx [F(α,β;γ;x)]
∞
= Σ α(α+1)ₖβ(β+1)ₖ xᵏ/k!γ(γ+1)ₖ
k=0
∞
= αβ/γ [Σ (α+1)ₖ(β+1)ₖ xᵏ
k=0
= αβF(α+1,β+1;γ+1;x)/γ ....(2)
Repeated application of equation(2) leads to the formula
dᵐ/dxᵐ [F(α,β;γ;x)] = (α)ₘ(β)ₘF(α+m,β+m;γ+m;x)/(γ)ₘ
m= 1,2..... ..........(3)
From now on , to simplify the notation , we write
F(α,β;γ;x) ≡F , F(α±1,β;γ,x)≡F(α±1)
F(α,β±1;γ;x)≡F(β±1) , F(α,β;γ±1;x)≡F(γ±1) . Then the function F(α±1),F(β±1) and F(γ±1) are said to be contiguous to F . The function F and any two functions contiguous to F are connected by recurrence relations whose coefficients are linear functions of the variable x . There are altogether fifteen(15) recurrence relations involving F and its contiguous functions . We cite a few of the relations given below .
(γ-α-β)F + α(1-x)F(α+1)-(γ-β)F(β-1)=0 ......(4)
(γ-α-1)F+αF(α+1)-(γ-1)F(γ-1)=0 ......(5)
γ(1-x)F-γF(α-1)+(γ-β)xF(γ+1)=0 .......(6)
which can be verified by direct substitution of the series (9). For example,
substituting (9) into (4) , we obtain
(γ-α-β)F +α(1-x)F(α+1)-(γ-β)F(β-1)
∞
= (γ-α-β) Σ (α)ₙ(β)ₙ xⁿ/n!(γ)ₙ
n=0
∞
+ α(1-x) Σ (α+1)ₙ(β)ₙ xⁿ/n!(γ)ₙ
n=0
∞
- (γ-β) Σ (α)ₙ(β-1)ₙxⁿ/n!(γ)ₙ
n=0
∞
=(γ-α-β) Σ (α)ₙ(β)ₙxⁿ/n!(γ)ₙ
n=0
∞
+ α Σ (α+1)ₙ(β)ₙxⁿ / n!(γ)ₙ
n=0
∞
-(γ-β) Σ (α)ₙ(β-1)ₙxⁿ/n!(γ)ₙ
n=0
∞
-α Σ (α+1)ₙ(β)ₙxⁿ⁺¹/n!(γ)ₙ
n=0
∞
= (γ-α-β)+Σ (α)ₙ(β)ₙxⁿ/n!(γ)ₙ
n=1
∞
+α+α Σ (α+1)ₙ(β)ₙxⁿ/n!(γ)ₙ
m= 1,2..... ..........(3)
From now on , to simplify the notation , we write
F(α,β;γ;x) ≡F , F(α±1,β;γ,x)≡F(α±1)
F(α,β±1;γ;x)≡F(β±1) , F(α,β;γ±1;x)≡F(γ±1) . Then the function F(α±1),F(β±1) and F(γ±1) are said to be contiguous to F . The function F and any two functions contiguous to F are connected by recurrence relations whose coefficients are linear functions of the variable x . There are altogether fifteen(15) recurrence relations involving F and its contiguous functions . We cite a few of the relations given below .
(γ-α-β)F + α(1-x)F(α+1)-(γ-β)F(β-1)=0 ......(4)
(γ-α-1)F+αF(α+1)-(γ-1)F(γ-1)=0 ......(5)
γ(1-x)F-γF(α-1)+(γ-β)xF(γ+1)=0 .......(6)
which can be verified by direct substitution of the series (9). For example,
substituting (9) into (4) , we obtain
(γ-α-β)F +α(1-x)F(α+1)-(γ-β)F(β-1)
∞
= (γ-α-β) Σ (α)ₙ(β)ₙ xⁿ/n!(γ)ₙ
n=0
∞
+ α(1-x) Σ (α+1)ₙ(β)ₙ xⁿ/n!(γ)ₙ
n=0
∞
- (γ-β) Σ (α)ₙ(β-1)ₙxⁿ/n!(γ)ₙ
n=0
∞
=(γ-α-β) Σ (α)ₙ(β)ₙxⁿ/n!(γ)ₙ
n=0
∞
+ α Σ (α+1)ₙ(β)ₙxⁿ / n!(γ)ₙ
n=0
∞
-(γ-β) Σ (α)ₙ(β-1)ₙxⁿ/n!(γ)ₙ
n=0
∞
-α Σ (α+1)ₙ(β)ₙxⁿ⁺¹/n!(γ)ₙ
n=0
∞
= (γ-α-β)+Σ (α)ₙ(β)ₙxⁿ/n!(γ)ₙ
n=1
∞
+α+α Σ (α+1)ₙ(β)ₙxⁿ/n!(γ)ₙ
n=1
∞
-(γ-β)-(γ-β) Σ (α)ₙ(β-1)ₙxⁿ/n!(γ)ₙ
n=1
∞
-α Σ (α+1)ₙ₋₁(β)ₙ₋₁xⁿ/(n-1)!(γ)ₙ₋₁
n=1
∞
= Σ(α)ₙ(β)ₙ₋₁/n!(γ)ₙ [(γ-α-β)(β+n-1)+(α+n)
n=1 (β+n-1)-(γ-β)(β-1)-(γ+n-1)]xⁿ = 0
Similarly the other two can be verified . Three other formulae are an immediate consequence of equation(4)-(6) and symmetry condition
(γ-α-β)F + β(1-x)F(β+1)-(γ-α)F(α -1)=0 ...(7)
(γ-β-1)F+βF(β+1)-(γ-1)F(γ-1)=0 .......(8)
γ(1-x)F-γF(β-1)+(γ-α)xF(γ+1)=0 .........(9)
∞
-(γ-β)-(γ-β) Σ (α)ₙ(β-1)ₙxⁿ/n!(γ)ₙ
n=1
∞
-α Σ (α+1)ₙ₋₁(β)ₙ₋₁xⁿ/(n-1)!(γ)ₙ₋₁
n=1
∞
= Σ(α)ₙ(β)ₙ₋₁/n!(γ)ₙ [(γ-α-β)(β+n-1)+(α+n)
n=1 (β+n-1)-(γ-β)(β-1)-(γ+n-1)]xⁿ = 0
Similarly the other two can be verified . Three other formulae are an immediate consequence of equation(4)-(6) and symmetry condition
(γ-α-β)F + β(1-x)F(β+1)-(γ-α)F(α -1)=0 ...(7)
(γ-β-1)F+βF(β+1)-(γ-1)F(γ-1)=0 .......(8)
γ(1-x)F-γF(β-1)+(γ-α)xF(γ+1)=0 .........(9)
The rest of the recurrence relation can be obtained from equation(4)-(9) by eliminating a common contiguous function from an approximate pair of formulae . For example , combining equation (5) and (8), or (6) and (9) , we obtain
(α-β) F - αF(α+1)+βF(β+1)=0 .........(10)
(α-β)(1-x)F + (γ-α)F(α-1) - (γ-β)F(β-1) = 0 , as so on ..........(11)
(α-β) F - αF(α+1)+βF(β+1)=0 .........(10)
(α-β)(1-x)F + (γ-α)F(α-1) - (γ-β)F(β-1) = 0 , as so on ..........(11)
Comments
Post a Comment
If Any Doubt Ask Me