Integral Formula For The Hypergeometric Series
Integral Formula For The Hypergeometric Series :
Theorem :
The hypergeometric function F(α,β;γ;x) can be represented by
[Γ(γ)/Γ(β)Γ(γ-β)]
1
∫(1-t)^(γ-β-1) t^(β-1) (1-xt)^-α dt
0
Proof :
We know that
(β)ₙ = β(β+1)...(β+n-1) = Γ(β+n)/Γ(β)
Similarly (γ)ₙ = Γ(γ+n)/Γ(γ)
Again
B(m,n) = Γ(m)Γ(n)/Γ(m+n)
Consider,
B(β+n,γ-β) / B(β,γ-β)
= [Γ(β+n)Γ(γ-β)/Γ(γ+n)]/[Γ(β)Γ(γ-β)/Γ(γ)
= [Γ(β+n)/Γ(β)] / [Γ(γ+n)/Γ(γ)]
Thus (β)ₙ/(γ)ₙ = B(β+n, γ-β) / B(β, γ-β)
From the definition of Beta function , we have
1
B(p,q) = ∫ tᵖ⁻¹ (1-t)^(q-1) dt , t<1.
0
Therefore,
(β)ₙ/(γ)ₙ = 1/B(β, γ-β)
1
∫ t^(β+n-1) (1-t)^(γ-β-1) dt
0
= Γ(γ) / Γ(β)Γ(γ-β)
1
∫ t^(β+n-1) (1-t)^(γ-β-1) dt , n=0,1,2....
0 .........,(1)
∞
Now F(α,β;γ;x) = Σ (α)ₙ(β)ₙ xⁿ/n!(γ)ₙ
n=0
∞
= Σ (α)ₙxⁿ/n! . Γ(γ) / Γ(β)Γ(γ-β)
n=0
1
∫ t^(β+n-1) (1-t)^(γ-β-1) dt
0
Reversing the order of summation and integration which is justified for an absolute convergence argument , we see that
F(α,β;γ;x) = 1
Γ(γ)/[Γ(β) Γ(γ-β)] ∫ t^(γ-β-1) t^(β-1)
0
∞
{ Σ (α)ₙ (xt)ⁿ/n!} dt
n=0
...............(2)
Since t<1 , we have if |x|≤1
(1-xt)^-α = 1+α(xt)/1! + α(α+1)(xt)²/2!+.....
∞
= Σ (α)ₙ (xt)ⁿ/n!
n=0
Hence from equation(2)
F(α,β;γ;x) = Γ(γ)/Γ(β)Γ(γ-β)
1
∫ (1-t)^(γ-β-1) t^(β-1) (1-xt)^-α dt
0
γ>β>0 , |x|≤1 (Proved)
..........(3)
Corollary :
If we put x=1 in equation(3) , we get
F(α,β;γ;1) = Γ(γ)/Γ(β)Γ(γ-β)
1
∫ (1-t)^(γ-α-β-1) t^(β-1) dt
0
= Γ(γ)/ Γ(β)Γ(γ-β) Β(β,γ-α-β)
if β>0 , γ-α-β>0
= Γ(γ)/Γ(β)Γ(γ-β) × Γ(β)Γ(γ-α-β) / Γ(γ-α)
= Γ(γ)Γ(γ-α-β) / Γ(γ-α) Γ(γ-β)
Which is called Gauss's Theorem . ........(4)
Comments
Post a Comment
If Any Doubt Ask Me