Integral Representation Of Confluent Hypergeometric Function
Integral Representation Of Confluent Hypergeometric Function:
Theorem :
If γ>α>0 , then the function F(α;γ;x) can be expressed as
1
Γ(γ)/Γ(γ)Γ(γ-α) ∫ eˣᵗ t^(α-1)(1-t)^(γ-α-1) dt.
0
Proof :
We know that
B(α+n,γ-α)/B(α,γ-α) =
Γ(α+n)Γ(γ-α)/Γ(γ+n) / Γ(α)Γ(γ-α)/Γ(γ)
= Γ(α+n)/Γ(α) / Γ(γ+n)/Γ(γ)
But Γ(α+n)/Γ(α) = (α)ₙ and Γ(γ+n)/Γ(γ) = (γ)ₙ
Therefore,
(α)ₙ/(γ)ₙ = B(α+n,γ-α)/Β(α,γ-α)
1
= Γ(γ)/Γ(α)Γ(γ-α) ∫ t^(α+n-1) (1-t)^(γ-α-1) dt
0
∞
Now F(α;γ;x) = Σ (α)ₙxⁿ/n!(γ)ₙ
n=0
= Γ(γ)/Γ(α)Γ(γ-α)
∞ 1
Σ xⁿ/n! ∫ t^(α-1) tⁿ(1-t)^(γ-α-1) dt
n=0 0
Interchanging the order of summation and integration we have
F(α;γ;x) = Γ(γ)/Γ(α)Γ(γ-α)×
1 ∞
∫ t^(α-1) (1-t)^(γ-α-1) dt Σ (xt)ⁿ/n!
0 n=0
1
= Γ(γ)/Γ(α)Γ(γ-α) ∫ eˣᵗ t^(α-1) (1-t)^(γ-α-1) dt
0 ............(1)
We can use this integral representation to deduce an important relation satisfied by the function F(α;γ;x).
Putting t= 1-s in the above result we get
F(α;γ;x) = Γ(γ)/Γ(α)Γ(γ-α)×
0
∫ e⁻ˣˢ s^(γ-α-1) (1-s)^(α-1) (-ds)
1
= Γ(γ)eˣ/Γ(α)Γ(γ-α) ×
1
∫ s^(γ-α-1) (1-s)^(α-1)e⁻ˣˢ ds
0
Let γ-α = α₁; then γ-α₁ = α.
Hence
F(α;γ;x) = Γ(γ)eˣ/Γ(γ-α₁)Γ(α₁)×
1
∫ s^(α₁-1) (1-s)^(α-1) e⁻ˣˢ ds
0
= eˣ F(α₁;γ;-x)
= eˣ F(γ-α;γ;-x), .........(2)
Which is known as Kummer's result.
Whittaker Functions :
If we substitute y= x^-γ/2 e^x/2 W(x) in the equation
xy" + (γ-x)y' -αy = 0,
We find that the function W(x) satisfies the differential equation
d²W/dx² + [-1/4 + k/x + (1/4 - m²) /x²]W =0,
where k stands for γ/2 -α and m for
Comments
Post a Comment
If Any Doubt Ask Me