The Shifting Theorem

The Shifting Theorem :


           If L{f(t)}= f̅(p), then

          L{eᵃᵗf(t)} = f̅(p-a) , p>a

Proof :


    By definition 
                       ∞
            f̅(p) = ∫ e⁻ᵖᵗ f(t) dt
                      0
                                   ∞
Therefore, f̅(p-a) = ∫ e^-(p-a)t f(t) dt
                                  0
                                 ∞
                              = ∫ e⁻ᵖᵗ[eᵃᵗ f(t)] dt
                                 0

                              = L{eᵃᵗ f(t)}.

Corollary :


         L{e⁻ᵃᵗ f(t)} = f̅(p+a); (p>-a).

This follows immediately from the above theorem by writing -a for a.

Example _1:


        Find the transform of eᵃᵗ tⁿ .


Solution


          Since  L{tⁿ} = n!/pⁿ⁺¹

by using the above theorem , we find

           L{eᵃᵗ tⁿ} = n!/(p-a)ⁿ⁺¹

which is the required solution .

Example_2 :

     Find the Laplace Transformation of 
     
         f(t) =  . e³ᵗ

Solution :

       To find L{t^7/2 . e³ᵗ} first we have to find out the value of L{t^7/2} 

Now ,  As we know that   

         L{tⁿ} = n!/pⁿ⁺¹

So     L{t^7/2} = (7/2)!/p^[(7/2)+1]

      ⇒L{t^7/2} = (7/2)Γ(7/2) / p^(9/2)

                         = (7/2)Γ(5/2 + 1) / p^(9/2)

                        = (7/2)(5/2)Γ(5/2) / p^(9/2)

                                           [∵Γ(n+1) = nΓ(n)]

                    = (7/2)(5/2)Γ(3/2 + 1) / p^(9/2)

                  =  (7/2)(5/2)(3/2)Γ(3/2) / p^(9/2)

                  = (7/2)(5/2)(3/2)Γ(1/2 + 1)/ p^(9/2)

               = (7/2)(5/2)(3/2)(1/2)Γ(1/2) / p^(9/2)

               = (7/2)(5/2)(3/2)(1/2)√(π ) / p^(9/2)

                                           [∵Γ(1/2) = √(π )]

  
   ⇒L{t^7/2} = 105√(π )/16 p^(9/2)= F(p)

∴     L{t^7/2 . e³ᵗ} = 105√(π )/16(p-a)^(9/2)

   Which is the required solution .


Comments

Popular posts from this blog

Accuracy Of Numbers

PFAFFIAN Differential Equations And It's Solutions

Complete Integral Of Partial Differential Equations