Laplace Transform Of Periodic Functions
Laplace Transform Of Periodic Functions :
Definition :
A function f(t) is said to be periodic , with a period 'l' , if it satisfies the functional equation
f(t±l) = f(t)
So, if t>0 , a periodic function f(t) can be written as
f(t) = f(t + nl) , n= 0,1,2.. ......(1)
For example sin t = sin(t+2πn) , n=0,1,2.... is a periodic function with period 2π .
In case a function f(t) is periodic , the Laplace transform can be expressed as an integral over one cycle of the function instead of an integral over an infinite range.
The transform of equation(1) is
∞
f̅(p) = ∫ e⁻ᵖᵗ f(t) dt
a
l 2l 3l
= [ ∫ + ∫ + ∫ .....]e⁻ᵖᵗ f(t) dt
0 l 2l
∞ (n+1)l
= Σ ∫ e⁻ᵖᵗ f(t) dt ............(2)
n=0 nl
Now let us substitute
t = τ + nl ,
Where τ is a new variable , so that
f(t) = f(τ+nl) = f(τ) .
We have dt = dτ. In the integration , when t= nl , we have τ = 0 and when t= (n+1)l , τ= l.
Hence from (2) we get
∞ l
f̅(p) = Σ ∫ f(τ+nl) e^ -p(τ+nl) dτ
n=0 0
∞ l
= Σ e⁻ᵖⁿᵗ ∫ f(τ) e^-pτ dτ .......(3)
n=0 0
Now
∞
Σ e⁻ᵖⁿᵗ = 1+e⁻ᵖᵗ + e⁻²ᵖᵗ+ e⁻³ᵖᵗ + ...
n=0
= 1/ 1-e⁻ᵖᵗ , since e⁻ᵖᵗ < 1 .......(4)
From the relations (3) and (4) , we have
l
f̅(p) = 1/ 1-e⁻ᵖᵗ ∫ e⁻ᵖᵗ f(t) dt .
0
We have thus established the theorem i.e.
l
L{f(t)} = 1/ 1-e⁻ᵖᵗ ∫ e⁻ᵖᵗ f(t) dt .
0
If you have any doubt in any mathematical problems then you can comment me and I will try my level best to solve your problem.
Comments
Post a Comment
If Any Doubt Ask Me