Laplace Transform Of Periodic Functions

Laplace Transform Of Periodic Functions :



Definition :


           A function f(t) is said to be periodic , with a period 'l' , if it satisfies the functional equation 

                 f(t±l) = f(t) 

   So, if t>0 , a periodic function f(t) can be written as 

          f(t) = f(t + nl) , n= 0,1,2.. ......(1)

     For example sin t = sin(t+2πn) , n=0,1,2.... is a periodic function with period 2π . 

     In case a function f(t) is periodic , the Laplace transform can be expressed as an integral over one cycle of the function instead of an integral over an infinite range.

           The transform of equation(1) is 
                     ∞
          f̅(p) = ∫ e⁻ᵖᵗ f(t) dt 
                    a
                       l     2l   3l
                 = [ ∫ + ∫ + ∫  .....]e⁻ᵖᵗ f(t) dt
                      0     l    2l
                  ∞ (n+1)l
                = Σ    ∫  e⁻ᵖᵗ f(t) dt   ............(2)  
                  n=0 nl

Now  let us substitute 

               t = τ + nl ,

Where τ is a new variable , so that 

       f(t) = f(τ+nl) = f(τ) .

   We have dt = dτ. In the integration , when t= nl , we have τ = 0 and when t= (n+1)l ,     τ= l.

  Hence from (2) we get 
                ∞     l
      f̅(p) = Σ    ∫ f(τ+nl) e^ -p(τ+nl) dτ
               n=0 0
                ∞             l
             = Σ   e⁻ᵖⁿᵗ ∫ f(τ) e^-pτ dτ .......(3)
               n=0        0

Now 
           ∞
           Σ e⁻ᵖⁿᵗ = 1+e⁻ᵖᵗ + e⁻²ᵖᵗ+ e⁻³ᵖᵗ + ...
         n=0

                       = 1/ 1-e⁻ᵖᵗ , since e⁻ᵖᵗ < 1 .......(4)

   From the relations (3) and (4) , we have 
                                     l
        f̅(p) = 1/ 1-e⁻ᵖᵗ   ∫ e⁻ᵖᵗ f(t) dt .
                                   0

   We have thus established the theorem i.e.
                                     l
      L{f(t)} = 1/ 1-e⁻ᵖᵗ ∫ e⁻ᵖᵗ f(t) dt .
                                    0 

     Which is known as Laplace Transform Of Periodic Function Theorem .


If you have any doubt in any mathematical problems then you can comment me and I will try my level best to solve your problem.

Comments

Popular posts from this blog

Derivation Of Composite Trapezoidal Rule

PFAFFIAN Differential Equations And It's Solutions

Complete Integral Of Partial Differential Equations