PFAFFIAN Differential Equations And It's Solutions

PFAFFIAN Differential Equations And It's Solutions :-



     The relation 
            n
            Σ  Fᵢ(x₁,x₂,......xₙ) dxᵢ = 0
           i=1  

where Fᵢ's (i=1,2,....n) are functions of all or some of the n independent variables x₁,x₂,.....xₙ is called a Pfaffian differential equation . Here we shall study Pfaffian differential equation in three independent variables which is of the form 

            P dx + Q dy + R dz = 0    ...........(1)

   where P, Q , R are functions of x , y and z . Setting -->                        -->
              X = (P,Q,R)  and dr = (dx,dy,dz), equation (1) can be written in the vector notation as 
                 -->  -->
                 X . dr    = 0                  ..............(2)
 If there exists a function μ(x,y,z) such that μ(P dx + Q dy + R dz) is an exact differential dΦ , the equation is said to be integrable and to possess an integrating factor μ(x,y,z) . In such case(1) becomes

                   dΦ = 0

which on integration yields

                 Φ(x,y,z) = c            ..................(3)

   The function Φ is called the primitive and the relation (3) is called the solution of the differential equation . In general all equations of the form (1) may not possess of equation (1) . This is contained in the following theorem .

Before going to state the theorem first we shall prove two Lemmas .

Lemma 1 :


         If two functions u(x,y) and v(x,y) satisfy the relation ∂(u,v) / ∂(x,y) = 0 then there exists between them a relation    F(u,v) =0 , not involving x or y explicitly . 

Proof


     Eliminating y between the equations 

             u= u(x,y) , v = v(x,y)     ............(4)

 we obtain a relation 

        F(u,v,x) = 0                    ....................(5)

Differentiating (6) with respect to x and y respectively we obtain , 

 ∂F/∂x + ∂F/∂u ∂u/∂x + ∂F/∂v ∂v/∂x = 0 

and    ∂F/∂u ∂u/∂y + ∂F/∂v ∂v/∂y  = 0 

Elimination of ∂F/∂v from these equations yields 

∂F/∂x ∂v/∂y+

          (∂u/∂x ∂v/∂y - ∂u/∂y ∂v/∂x) ∂F/∂u  = 0 

⇒ ∂F/∂x ∂v/∂y +∂(u,v)/∂(x,y) ∂F/∂u = 0 

  Using the given condition this equation reduces to  

          ∂F/∂x ∂v/∂y = 0    ......................(6)

 Since v is a function of both x and y ,        ∂v/∂y ≠ 0 . So equation(7) implies 

         ∂F/∂x = 0 

  which shows that F does not contain x explicitly and hence (6) may be written as 

              F(u,v ) = 0                     (Proved)

Lemma 2



         -->
      If X  is a vector and μ is an arbitrary function of x,y,z then 
               -->          -->
               X  . curl X     = 0
                                 -->                  -->
  if and only if    (μ X  ) . curl (μ X  ) = 0 .

Proof

           
                           -->           -->
       Suppose first that X  . curl X   = 0 and 
       -->
left X  = (P,Q,R) , then 
      -->                --> 
  (μ X ) . curl (μ Χ  ) = μP{∂(μR)/∂y) - ∂(μQ)/∂z}

                                +μQ{∂(μP)/∂z - ∂(μR)/∂x}

                               + μR{∂(μQ)/∂x - ∂(μp)/∂y}

      = μ²{P(∂R/∂y - ∂Q/∂z) + Q(∂P/∂z - ∂R/∂x)

                                            + R(∂Q/∂x - ∂P/∂y)}

                            + {(PR ∂μ/∂y - PQ ∂μ/∂z)

 +(QP ∂μ/∂z -QR ∂μ/∂x)+(RQ ∂μ/∂x - RP ∂μ/∂y)}
             -->          -->
    = μ²( X  . curl X  )  [∵ the term in the                                                     second bracket                                                 vanishes identically ]

    = 0
                                           -->              -->
Conversely , suppose (μ X  . curl(μ X ) = 0

Then , by the above result ,
                   -->                        -->
         (1/μ μ X  ) . curl(1/μ μ X   ) =0
          -->            -->
          X    . curl X     = 0         (Proved) 

        The solution of the PFAFFIAN Differential Equations is the proof of the theorem given below .

Theorem :- 

                     
                                    

        A necessary and sufficient condition that the PFAFFIAN Differential Equation
        -->   -->
        X   . dr  = 0 is integrable is that
              -->           -->
              X   . curl X   = 0             .................(7)

Proof :


 Necessary Part  :


           Suppose that the differential equation
                  -->   -->
                  X   . dr  = 0

i.e.      P dx + Q dy + R dz = 0     ...........(1)

is integrable . Then there exists a function μ(x,y,z) such that μ(P dx + Q dy + R dz)
is an exact differential dΦ .

 Hence we must have 

    μP = ∂Φ/∂x , μQ = ∂Φ/∂y , μR= ∂Φ/∂z

Now   grad Φ = (∂Φ/∂x , ∂Φ/∂y , ∂Φ/∂z) 
                                                         -->
                         = (μP , μQ , μR) = μX .
                  -->
 So curl (μX  ) = curl (grad Φ) = 0
                    -->               -->
Hence     (μΧ ) . curl (μΧ ) = 0 

 which implies by lemma 2 , that 
                     -->          -->
                     X  . curl X   = 0

  Sufficient Part


        Let z be treated as a constant . Then the differential equation(1) reduces to 

      P(x,y,z)dx + Q(x,y,z)dy = 0       .......(8)

i.e.       dy/dx = -P(x,y,z)/Q(x,y,z)

   if Q(x,y,z) ≠ 0.

  So , if P and Q are continuous functions of x and y , then equation (8) has a solution of the form 

    Φ(x,y,z) = c₁                            ............(9)

 where the constant c₁ may involve z . In differential form equation (9) is 

    ∂Φ/∂x dx + ∂Φ/∂y dy = 0 

 which should be equivalent to (8) so that 

     ∂Φ/∂x/P = ∂Φ/∂y/Q = μ(x,y,z) (say)

 ⇒  ∂Φ/∂x = μP , ∂Φ/∂y = μQ   ................(10)

   Multiplying equation(1) by μ and using equation (10) it can be written as 

   ∂Φ/∂x dx + ∂Φ/∂y dy + ∂Φ/∂z dz + 

                                       (μR - ∂Φ/∂z) dz = 0

 which is equivalent to    

                     dΦ + Ψ dz = 0         ..........(11)

  where  Ψ = μR - ∂Φ/∂z             ............(12)
                                      -->          -->
 The given condition X  . curl X  = 0 implies , by lemma 2 , 
       -->                -->
    (μΧ ) . curl (μΧ  ) = 0 

But as 
       -->
     μΧ   = (μP , μQ , μR)

             = (∂Φ/∂x , ∂Φ/∂y , ∂Φ/∂z + Ψ) by (10)                                                                   and (12)

             = (∂Φ/∂x , ∂Φ/∂y ,∂Φ/∂z) + (0,0,Ψ)

             = grad Φ + (0,0,Ψ) .
           -->
curl (μΧ ) = curl (grad Φ) + curl(0,0,Ψ)

                  = 0 + (∂Ψ/∂y , -∂Ψ/∂x ,0)
                       -->                -->
Hence   0= (μΧ  ) . curl (μΧ )

                          = (∂Φ/∂x , ∂Φ/∂y , ∂Φ/∂z + Ψ)                                    (∂Ψ/∂y , -∂Ψ/∂x , 0)

                   = ∂Φ/∂x ∂Ψ/∂y - ∂Φ/∂y ∂Ψ/∂x

                   =  ∂(Φ,Ψ) / ∂(x,y)

   It follows from lemma 1 that there exists a relation between Φ and Ψ not involving x and y explicitly but it may involve z . So Ψ may be written as a function Ψ(Φ,z) of Φ and z . The equation (11) assumes the form

                   dΦ/dz = - Ψ(Φ,z)

  which possess a solution of the form

                       f(Φ,z) = c        .............(13)

   Substituting for Φ its expression in terms of x,y,z the solution (13) of (11) which is equivalent to (1) is of the form

                     F(x,y,z) = c

   This shows that equation (1) is integrable .

                                                         (Proved)



                  
                        Motivational Quote

  
 "Mathematics Is The Art Of Giving The                Same Name To Different Things "

                                        by Henri Poincare



   
        

Comments

Popular posts from this blog

Derivation Of Composite Trapezoidal Rule

Complete Integral Of Partial Differential Equations