Cauchy Riemann Equations For Analytic Function
Cauchy - Riemann Equations :-
Cauchy-Riemann Equation |
Necessary Conditions For A Function To Be Analytic :
Cauchy-Riemann Equation |
Statement:-
Cauchy-Riemann Equation |
The necessary conditions for
w = f(z) = u(x,y) + i v(x,y) to be analytic (differentiable) at any point z = x + i y of its domain D is that the four patial derivatives ∂u/∂x , ∂u/∂y ,∂v/∂x ,∂v/∂y should exists and satisfy the C-R partial differential equations .
∂u/∂x = ∂v/∂y and ∂u/∂y = - ∂v/∂x
∂u/∂x = ∂v/∂y and ∂u/∂y = - ∂v/∂x
Proof :-
Let f(z) = u(x,y) + i v(x,y) be analytic at any point z of its domain , then
f'(z) = lim f(z+δz) - f(z) / δz
δx-->0
exists and is unique .
i.e it is independent of the path along which δz -->0
Let z = x+ iy ∴ δz = δx + i δy and as δz-->0
then δx , δy --> 0
∴ f'(z) =
lim [u(x+δx ,y+δy) + iv(x+δx,y+δy)]/δx+iδy
δx-->0
δy-->0
-
lim [u(x,y) + iv(x,y)] / δx+iδy
δx-->0
δy-->0
=
lim [u(x+δx , y+δy) - u(x,y)] / δx+iδy
δx-->0
δy-->0
+
lim i [v(x+δx , y+δy) - v(x,y)] / δx + i δy
δx-->0
δy-->0 .......(1)
Now let us consider two possible approaches in which δz -->0
Case-I:-
Let δz be purely real , then δz = δx , δy=0 and δx -->0
Hence from (1) , we get
f'(z) = lim [u(x+δx ,y) - u(x,y)]/δx
δx-->0
+
lim i[v(x+δx , y) - V(x,y)]/ δx
δx-->0
or f'(z) = ∂u/∂x + i ∂v/∂x ..........(2)
Since f'(z) exists , then above limit exists i.e. ∂u/∂x and ∂v/∂x exists .
Case-II:-
Let δz-->0 along the imaginary axis , then δz is purely imaginary and then δx = iδy , δx= 0 and δy-->0 . Hence from(1) we get
f'(z) = lim [u(x, y+iy) - u(x,y)]/iy
δy-->0
+
lim i [v(x,y+δy) - u(x,y)]/iδy
δy-->0
or, f'(z) = 1/i ∂u/∂y + ∂v/∂y
or, f'(z) = -i ∂u/∂y + ∂v/∂y .........(3)
Since f'(z) exists ,
then above limit exists i.e. ∂u/∂y abd ∂v/∂y exists .
Now , the two limits in (2) and (3) are identical and unique .
∂u/∂x + i ∂v/∂x = -i ∂u/∂y + ∂v/∂y
Equating real and imaginary parts we get
∂u/∂x = ∂v/∂y ........(4)
and ∂u/∂y = -∂v/∂x ........(5)
Equations (4) and (5) are called Cauchy - Riemann Partial Differential Equations .
δy-->0
or, f'(z) = 1/i ∂u/∂y + ∂v/∂y
or, f'(z) = -i ∂u/∂y + ∂v/∂y .........(3)
Since f'(z) exists ,
then above limit exists i.e. ∂u/∂y abd ∂v/∂y exists .
Now , the two limits in (2) and (3) are identical and unique .
∂u/∂x + i ∂v/∂x = -i ∂u/∂y + ∂v/∂y
Equating real and imaginary parts we get
∂u/∂x = ∂v/∂y ........(4)
and ∂u/∂y = -∂v/∂x ........(5)
Equations (4) and (5) are called Cauchy - Riemann Partial Differential Equations .
Polar Form Of Cauchy - Riemann Equations :
If w = f(z) = u+iv is an analytic function, show that , in polar form , the C - R equations are :
∂u/∂r = 1/r ∂v/∂θ , ∂v/∂r = -1/r ∂u/∂θ
Proof :-
We know that C-R equations are
∂u/∂x = ∂v/∂y and ∂u/∂y = - ∂v/∂x ...(1)
Let x = r cos θ , y= r sin θ
So (x²+y²) = r² ⇒√(x²+y²) = r
Now y/x = tan θ ⇒θ = tan⁻¹(y/x)
Then ∂r/∂x = 1/2 .1/√(x²+y² ) .2x = x/√(x²+y²)
= x/r = r cos θ /r = cos θ
Similarly , ∂r/∂y = y/r = r sin θ /r = sin θ
Again θ = tan⁻¹(y/x)
∂θ/∂x = 1/(1+y²/x²) (-y/x²) = -y/x²+y²
= -r sin θ /r² = -sin θ /r
∂θ/∂y = 1/(1+y²/x²) (1/x) = x/x²+y²
= r cos θ / r² = cos θ /r
∴ ∂u/∂x = ∂u/∂r . ∂r/∂x + ∂u/∂θ . ∂θ/∂x
= cos θ . ∂u/∂r - sin θ / r .∂u/∂θ
∂v/∂y = ∂v/∂r . ∂r/∂y + ∂v/∂θ .∂θ/∂y
= sin θ . ∂v/∂r + cos θ /r . ∂v/∂θ
From (1) , we get
∂u/∂x = ∂v/∂y
⇒cos θ ∂u/∂r - sin θ /r ∂u/∂θ
= sin θ ∂v/∂r + cos θ /r ∂v/∂θ
..........(2)
∂v/∂x = ∂v/∂r . ∂r/∂x + ∂v/∂θ . ∂θ/∂x
= cos θ. ∂v/∂r - sin θ /r .∂v/∂θ
∂u/∂y = ∂u/∂r . ∂r/∂y + ∂u/∂θ . ∂θ/∂y
= sin θ. ∂u/∂r + cos θ / r .∂u/∂θ
Again from (1) , we get
-∂v/∂x = ∂u/∂y
⇒sin θ /r . ∂v/∂θ - cos θ .∂v/∂r
= sin θ .∂u/∂r + cos θ /r .∂u/∂θ
............(3)
Multiplying equation (2) by cos θ and equation (3) by sin θ , we get
cos² θ . ∂u/∂r - sin θ . cos θ /r . ∂u/∂θ
= sin θ .cos θ ∂v/∂r + cos² θ /r . ∂v/∂θ
..............(4)
sin² θ . ∂u/∂r + cos θ sin θ /r . ∂u/∂θ
= -cos θ .sin θ ∂v/∂r + sin² θ /r . ∂v/∂θ
...............(5)
Adding equation(4) with equation (5), we get
(cos² θ + sin² θ).∂u/∂r
= (cos² θ + sin² θ)/r . ∂v/∂θ
⇒∂u/∂r = 1/r . ∂v/∂θ .............(6)
Multiplying equation (2) by sin θ and equation (3) by cos θ , we get
cos θ . sin θ . ∂u/∂r - sin² θ /r . ∂u/∂θ
= sin² θ . ∂v/∂r + sin θ . cos θ /r . ∂v/∂θ
...........(7)
sin θ . cos θ . ∂u/∂r + cos² θ /r . ∂u/∂θ
= -cos² θ . ∂v/∂r + cos θ.sin θ /r . ∂v/∂θ
............(8)
Subtracting we get ,
-(sin² θ + cos² θ)/r . ∂u/∂θ
= (sin² θ + cos² θ).∂v/∂r
⇒-1/r . ∂u/∂θ = ∂v/∂r
⇒∂v/∂r = -1/r . ∂u/∂θ ................(9)
So , equation(6) and equation (8) are called C-R equations in polar form .
Please Leave A Comment
= x/r = r cos θ /r = cos θ
Similarly , ∂r/∂y = y/r = r sin θ /r = sin θ
Again θ = tan⁻¹(y/x)
∂θ/∂x = 1/(1+y²/x²) (-y/x²) = -y/x²+y²
= -r sin θ /r² = -sin θ /r
∂θ/∂y = 1/(1+y²/x²) (1/x) = x/x²+y²
= r cos θ / r² = cos θ /r
∴ ∂u/∂x = ∂u/∂r . ∂r/∂x + ∂u/∂θ . ∂θ/∂x
= cos θ . ∂u/∂r - sin θ / r .∂u/∂θ
∂v/∂y = ∂v/∂r . ∂r/∂y + ∂v/∂θ .∂θ/∂y
= sin θ . ∂v/∂r + cos θ /r . ∂v/∂θ
From (1) , we get
∂u/∂x = ∂v/∂y
⇒cos θ ∂u/∂r - sin θ /r ∂u/∂θ
= sin θ ∂v/∂r + cos θ /r ∂v/∂θ
..........(2)
∂v/∂x = ∂v/∂r . ∂r/∂x + ∂v/∂θ . ∂θ/∂x
= cos θ. ∂v/∂r - sin θ /r .∂v/∂θ
∂u/∂y = ∂u/∂r . ∂r/∂y + ∂u/∂θ . ∂θ/∂y
= sin θ. ∂u/∂r + cos θ / r .∂u/∂θ
Again from (1) , we get
-∂v/∂x = ∂u/∂y
⇒sin θ /r . ∂v/∂θ - cos θ .∂v/∂r
= sin θ .∂u/∂r + cos θ /r .∂u/∂θ
............(3)
Multiplying equation (2) by cos θ and equation (3) by sin θ , we get
cos² θ . ∂u/∂r - sin θ . cos θ /r . ∂u/∂θ
= sin θ .cos θ ∂v/∂r + cos² θ /r . ∂v/∂θ
..............(4)
sin² θ . ∂u/∂r + cos θ sin θ /r . ∂u/∂θ
= -cos θ .sin θ ∂v/∂r + sin² θ /r . ∂v/∂θ
...............(5)
Adding equation(4) with equation (5), we get
(cos² θ + sin² θ).∂u/∂r
= (cos² θ + sin² θ)/r . ∂v/∂θ
⇒∂u/∂r = 1/r . ∂v/∂θ .............(6)
Multiplying equation (2) by sin θ and equation (3) by cos θ , we get
cos θ . sin θ . ∂u/∂r - sin² θ /r . ∂u/∂θ
= sin² θ . ∂v/∂r + sin θ . cos θ /r . ∂v/∂θ
...........(7)
sin θ . cos θ . ∂u/∂r + cos² θ /r . ∂u/∂θ
= -cos² θ . ∂v/∂r + cos θ.sin θ /r . ∂v/∂θ
............(8)
Subtracting we get ,
-(sin² θ + cos² θ)/r . ∂u/∂θ
= (sin² θ + cos² θ).∂v/∂r
⇒-1/r . ∂u/∂θ = ∂v/∂r
⇒∂v/∂r = -1/r . ∂u/∂θ ................(9)
So , equation(6) and equation (8) are called C-R equations in polar form .
Cauchy-Riemann Equation |
About Scientists :
Cauchy-Riemann Equation |
- Baron Augustin-Louis Cauchy (21 August 1789 – 23 May 1857) was a French mathematician, engineer, and physicist who made pioneering contributions to several branches of mathematics, including mathematical analysis and continuum mechanics.For more .
Cauchy-Riemann Equation |
- Georg Friedrich Bernhard Riemann was a German mathematician who made contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first rigorous formulation of the integral, the Riemann integral, and his work on Fourier series. For more.
Cauchy-Riemann Equation |
See Also
Is the following function analytic ?
f(z) = Im(z) [Imaginary part of Z = x+iy]
Solution :-
Here f(z) = Im(z) = Im(x+iy)= y = u+iv
So u = y , v = 0
⇒∂u/∂x = 0 , ∂u/∂y = 1 , ∂v/∂x = 0 , ∂v/∂y = 0
∴ ∂u/∂x = ∂v/∂y
and ∂u/∂y ≠ ∂v/∂x
Hence the C-R conditions are not satisfied by the given function . So , the given function is not analytic .
Try It By Yourself
Show that the following function is analytic .
f(z) = z²
Please Leave A Comment
Comments
Post a Comment
If Any Doubt Ask Me