Derivation of Newton's Fundamental Interpolation Formula

Derivation of Newton's Fundamental Interpolation Formula:

    Let y = f (x) be a function with given values yᵢ = f(xᵢ) for (n+1) points x₀,x₁,x₂,.....,xₙ . Our aim is to construct a polynomial Φ(x) of degree not higher than n satisfying the following conditions 

      Φ(xᵢ) =yᵢ=f(xᵢ) ........(1)
                             for i = 0,1,2...,n

Let us take the polynomial Φ(x) in the following form 

Φ(x) =a₀+a₁(x-x₀)+a₂(x-x₀)(x-x₁)+a₃(x-x₀)(x-x₁)(x-x₂) + ......+aₙ(x-x₀)(x-x₁)(x-x₂)....(x-xₙ)
                                                        ........(2)

where a₀,a₁,....aₙ i.e aᵢ's are constants to be determined .

Putting  i=0 in equation (1) ,we get 

Φ(x₀) = y₀ = f(x₀) i.e f(x₀) = Φ(x₀)

Again , putting x= x₀ in equation (2) ,we get 

Φ(x₀) = a₀ ⇒a₀ = f(x₀) 
                  ⇒a₀ = f[x₀] .......(3)

Putting i =1 in and x= x₁ in (2) ,we get 

     f(x₁) = Φ(x₁)

and Φ(x₁) = a₀ + a₁(x₁-x₀)

or, f(x₁) = a₀ +a₁(x₁-x₀)=f(x₀) +a₁(x₁-x₀)

    ⇒a₁   = f(x₁)-f(x₀) / x-x₀ = f[x₀,x₁] .........(4)

Putting i =2 in equation (1) and x= x₂ in equation (2) we get Φ(x₂) = f(x₂)

and Φ(x₂) = a₀+ a₁(x₂-x₀) + a₂(x₂-x₀)(x₂-x₁)

 f(x₂) = a₀ + a₁(x₂-x₀) + a₂(x₂-x₀)(x₂-x₁)

or , f(x₂) = f(x₀) + [f(x₁)-f(x₀)/x-x₀](x-x₀) + 
                                      a₂ (x₂-x₀)(x₂-x₁)

or,a₂(x₂-x₀)(x₂-x₁)=f(x₂)-f(x₀) -[f(x₁)-f(x₀)/x₁-x₀]
                                                           (x₂-x₀)

or, a₂ = f(x₁)-f(x₀) / (x₂-x₀)(x₂-x₁)  -

                                (x₂-x₀)f[x₀,x₁] /(x₂-x₀)(x₂-x₁)

            = f[x₀,x₂] /(x₂-x₁) - f[x₀,x₁] / (x₂-x₁)

            = f[x₀,x₁] - f[x₀,x₁]/(x₂-x₁) = f[x₀,x₁,x₂]
                                                                ........(5)

Similarly , we have 

      a₃ = f[x₀,x₁,x₂,x₃]
      a₄ = f[x₀,x₁,x₂,x₃,x₄]
       .................................

      aₙ = f[x₀,x₁,..........xₙ]

Putting these values of a₀,a₁,a₂,a₃,......aₙ in equation (2) we get 

Φ(x) = f[x₀] + (x-x₀)f[x₀,x₁] + 

                      (x-x₀)(x-x₁)f[x₀,x₁,x₂]+.........+

                 (x-x₀)(x-x₁).....(x-xₙ₋₁)f[x₀,x₁,x₂,...xₙ]
                                                        .............(6)

Equation(6) is called the Newton's Fundamental Interpolation Formula .It is also called Newton's Divided Difference Interpolation Formula .

Example :

                 Form the interpolation polynomial for the function y = f(x) given by in the table
using Newton's interpolation formula .

    X    -1       1      4       6   

    Y      1       -3     21      127

Solution :


          Given that 

         X        -1       1       4         6

          Y         1       -3      21       127

The Divided Difference Table is 



We know from Newton's Divided Difference Interpopation Formula that

f(x)=f[x₀]+(x-x₀)f[x₀,x₁] +(x-x₀)(x-x₁)f[x₀,x₁,x₂]

                 +(x-x₀)(x-x₁)(x-x₂)f[x₀,x₁,x₂,x₃]   ...(1)

Here x₀= -1 , x₁ = 1 , x₂ = 4 , x₃ = 6 

      f[x₀] = 1 , f[x₀,x₁] = -2 , f[x₀,x₁,x₂] = 2 , 

    f[x₀,x₁,x₂,x₃] =1

Putting the above values in equation (1) we get ,

  f(x) = 1+ (x+1)(-2) + (x+1)(x-1)(2) + 
                     (x+1)(x-1)(x-4)(1)

         =1 -2(x+1) + 2(x+1)(x-1) + (x+1)(x-1)(x-4)

         = x³ -2x² -3x +1

Which is required polynomial .


About Scientist :



Sir Isaac Newton FRS PRS was an English mathematician, physicist, astronomer, theologian, and author who is widely recognised as one of the most influential scientists of all time, and a key figure in the scientific revolution for more.
           

Comments

Popular posts from this blog

Derivation Of Composite Trapezoidal Rule

PFAFFIAN Differential Equations And It's Solutions

Complete Integral Of Partial Differential Equations