Darboux's Theorem For Integrability

Darboux's Theorem For Integrability :


          If  f is a bounded function on [a,b] , then to every ε > 0 , there corresponds         δ > 0, such that 
                       -b
 (A)   U(P,f) < ∫ f dx + ε  
                        a   
                            
                         b
  (B)    L(P,f) > ∫ f dx - ε
                       - a

for every partition P of [ a,b ] with norm μ(P) < δ .

Proof :



(A)        Given f is bounded function of [a,b] , so there exists a positive number k          such that 

        |f(x) | ≤ k   ∀ x ∈ [ a,b] 

  We know the upper integral is the infimum of the set of upper sums i.e to every ε > 0 , ∃ a partition P₁ = { x₀,x₁,x₂,.....xₙ}
 of [ a,b ] such that 
                 - b
    U(P,f) < ∫ f dx + ε / 2 ..........(1)
                  a

Here the partition P has p-1 points besides x₀ and xₚ . Let δ be a positive number     such that 

        2 k (p-1) δ = ε / 2 ......(2)

Let P be any partition with norm μ(P) < δ and let P* be a refinement of P and P₁ i.e    P* = P ∪ P₁ . As P* is a refinement of P having at the most p-1 more points than P , then we get 

  U(P,f) - 2 k (p-1)δ ≤ U(P* , f)

                                  ≤ U(P₁,f)
                                     - b
                                   < ∫ f dx + ε / 2  
                                       a

                                           [ using equation (1) ]
                   - b
So U(P,f) < ∫  f dx + ε / 2 + ε / 2 
                    a
                                   -  b
                                =  ∫  f dx + ε 
                                     a
                                       [ using equation (2) ]

             Similarly we can prove
                         b
 (B)    L(P,f) > ∫   f dx - ε               (Proved)                                - a

About Scientists :


       
      Jean-Gaston Darboux FAS MIF FRS FRSE (14 August 1842 – 23 February 1917) was a French mathematician.

            

Comments

Popular posts from this blog

Accuracy Of Numbers

PFAFFIAN Differential Equations And It's Solutions

Complete Integral Of Partial Differential Equations