Examples Related To Riemann Integral
Examples Related To Riemann Integral :
Example 1 :
1
Show that ∫ x⁴ dx = 1 / 5
0
Proof :
Let us consider the partition P in the interval [0,1] as { 0,1/n, 2/n , 3/n .....n/n }.
Since f(x) = x⁴ , so the supremum and infimum of the function in the interval is (i/n)⁴ and (i-1 / n) ⁴ .
Length of the interval = Δxᵢ = 1-0 / n = 1/n
n n
So U( P,x⁴ ) = Σ Mᵢ Δxᵢ = Σ (i/n) . 1/n
i=1 i=1
n
= 1/n⁵ Σ i⁴
i = 1
= 1/n⁵ [1⁴ + 2⁴ +.......+n⁴]
= (1/n⁵ ) n(n+1)(2n+1)(3n+1)(4n+1)/120
= 1/120 (1+1/n)(2+ 1/n)(3 + 1/n)(4 + 1/n)
-1
∴ ∫ x⁴ dx = inf U(P,x⁴) =1/120 ⨯ 1⨯2⨯3⨯4 =1/5
0
n n
Again , L(P,x⁴) = Σ mᵢΔxᵢ = Σ (i-1 / n)⁴ .1/n
i=1 i = 1
= 1/n⁵ n(n-1)(2n-1)(3n-1)(4n-1)/120
= 1/120 (1- 1/n)(2 - 1/n)(3 - 1/n)(4 - 1/n)
1
∴ ∫ x⁴ dx = sup L(P,x⁴) = 1/120 ⨯1⨯2⨯3⨯4 =1/5
0
-1
Hence ∫ x⁴ dx = 1/5 (Proved)
0
Example 2 :
If f is continuous and non negative on [a,b] show that b
∫ f dx ≥ 0 .
a
Proof :
Let the function f be continuous and non negative on [a,b] . Let us consider a partition P in the interval [a,b] with norm μ(P) as
P = { a= x₀,x₁,x₂, ......xₙ = b}
Since f is continuous , therefore f ∈ R on [a,b] .
b
⇒ lim sup(P,f) = ∫ f dx ≥ 0
μ(P)-->0 a
Example 3 :
If f is continuous and non negative
b
and [a,b] and ∫ f dx = 0 , then prove that
a
f(x) = 0 ∀ x ∈ [a,b]
Proof :
Let P be a partition on [a,b] such that
P = { a= x₀,x₁,x₂.....xₙ = b} . Since f is continuous ⇒f ∈ R on [a,b]
b
⇒ lim S(P,f) = ∫ f dx = 0 (given)
μ(P)-->0 a
n
Now , 0 = lim S(P,f) = Σ f(tᵢ) Δxᵢ
μ(P)-->0 i = 1
where tᵢ ∈ Δxᵢ
Again , as f is continuous and non negative each term on the R.H.S exist and is non negative . Moreover for all partition P with μ(P) -->0 and for all partitions of tᵢ in Δxᵢ
n
Σ f(tᵢ) Δxᵢ = 0
i= 1
⇒f(tᵢ) = 0 where i = 1,2,3....
⇒ f(x) = 0 ∀ x ∈ [ a,b ] (Proved)
Example 4 :
If f(x) = 0 or 1 according as x is ratioal or non rational . Prove that f is not integrable on any interval .
Proof :
Let P be a partition on [a,b] . Then
n
U(P,f) = Σ Mᵢ Δxᵢ =1.Δx₁ +1. Δx₂ +.....+1.Δxₙ
i=1
= Δx₁ + Δx₂ +.....Δxₙ
= b-a
-b
So ∫ f dx = inf U(P,f) = b-a
a
n
Now , L(P,f) = Σ mᵢΔxᵢ = 0.Δx₁+0.Δx₂+....+0.Δxₙ
i=1
= 0
b
So ∫ f dx = Sup L(P,f) = 0
-a
b - b
Thus ∫ f dx ≠ ∫ f dx
- a a
Thus f is not integrable on any interval . (Proved)
Comments
Post a Comment
If Any Doubt Ask Me