Simpson's One _ Third Rule
Simpson's One_Third Rule :
Let us suppose that interval (a,b) be divided into n equal sub intervals such that a = x₀,x₁,.........,xₙ₋₁,xₙ = b
We know from Newton's Forward Difference Interpolation formula that
y = y₀+ sΔy₀+s(s-1)/2! Δ²y₀+s(s-1)(s-2)/3! Δ³y₀
+ ................ .........(1)
Where xₙ = x₀+nh and x= x₀+sh .......(2)
Integrating both sides of equation (1) , between x₀ and xₙ we get
xₙ xₙ
∫ y dx = ∫ (y₀+sΔy₀+s(s-1)/2! Δ²y₀
x₀ x₀
+ s(s-1)(s-2)/3! Δ³y₀+.......)dx
Using equation (2) in the above expression ,
we get
xₙ n
∫ y dx = h∫ (y₀+sΔy₀+s(s-1)/2! Δ²y₀
x₀ 0
+s(s-1)(s-2)/3! Δ³y₀+.....)ds
xₙ
or, ∫ y dx = nh[y₀+n/2 Δy₀+n(2n-3)/12 Δ²y₀
x₀
+ n(n-2)²/24 Δ³y₀+........
.........(3)
Then putting n=2 in equation (2) , we get
x₂
∫ y dx = 2h [y₀+Δy₀+1/6 Δ²y₀]
x₀
= h/3 [y₀+4y₁+y₂] .............(4)
Similarly ,
x₄
∫ y dx = h/3 [y₂+4y₅+y₄] .......(5)
x₂
x₆
∫ y dx = h/3 [y₄+4y₅+y₆] .....(6)
x₄
.................................................
.................................................
xₙ
∫ y dx = h/3 [yₙ₋₂+4yₙ₋₁+yₙ] ............(7)
xₙ₋₁
Combining all the above equations ,we get
xₙ x₂ x₄ x₆ xₙ
∫ y dx = ∫ y dx + ∫ y dx + ∫ y dx +.......+∫ y dx
x₀ x₀ x₂ x₄ xₙ₋₂
= h/3 [y₀+4(y₁+y₃+......+yₙ₋₁)
+2(y₂+y₄+.......yₙ₋₂)+yₙ]
................(8)
This equation (8) is Simpson's One_third rule .
For Example:
Given
x 0 1 2 3 4
eˣ 1 2.72 7.39 20.09 54.60
4
Verify Simpson's rule by finding ∫ eˣ dx
0
and compare it with exact value .
Solution :
Here y₀=1 , y₁= 2.72 , y₂=7.39 , y₃= 20.09
y₄= 54.60 , h=1
Now , using Simpson's Rule , we get
4
∫ eˣ dx = h/3 [y₀+4(y₁+y₃)+2(y₂)+y₄]
0
= 1/3 [1+4(2.72+20.09) +2(7.39)+54.60]
= 1/3 [1+4(22.81)+2(7.39)+54.60]
= 53.87
4 4
But , actually ∫ eˣ dx = [eˣ ] = e⁴-e⁰
0 0
= 54.60-1 =53.60
Hence the approximate value is 53.87 and actual value is 53.60
Which is required solution .
Comments
Post a Comment
If Any Doubt Ask Me