Three _ Point Gauss_Legendre Rule

Three_Point Gauss_Legendre Rule:


       We have from  Gauss Quadrature Rule that 

 Rₙ₊₁(f) = w₀f(x₀) + w₁d(x₁) + ......+wₙf(xₙ) ...(1)

   ⇒R₃(f) = w₀f(x₀) + w₁f(x₁) + w₂f(x₂) .....(2)
                        1
Again , I(f) = ∫ f(x)dx .........(3)
                       -1

Now , I(f) is given by 

    I(f) = R₃(f) + E₃(f) ...........(4)

      where E₃(f) is its error . 


In order to determine the six parameters w₀, w₁,w₂,x₀,x₁,x₂  we make R₃(f) exact for all monomials if degree ≤ 5 , i.e 1,x,x²,x³,x⁴,x⁵ with  E₅(xʲ) = 0 , j= 0,1,2,3,4,5 
                                                        ...............(5)

Equation (4) can be written as 
     1
     ∫ f(x)dx = w₀f(x₀)+w₁f(x₁)+w₂f(x₂)+E₃(xʲ)
     -1
                                              ..................(6)

For f(x) = 1:


      We get from equation(6) 
     1
     ∫ 1dx= w₀.1 +w₁.1+w₂.1+E₃(1)
    -1

    ⇒2 = w₁+w₂+w₃+0

   ⇒ 2 = w₁+w₂+w₃

    For f(x) = x :


       We get from equation(4) 
   1
   ∫ xdx= w₀x₀+w₁x₁+w₂x₂+E₃(x)
  -1

   ⇒0 = w₀x₀+w₁x₁+w₂x₂+0 

   ⇒0 = w₀x₀+w₁x₁+w₂x₂ 

For f(x) = x² :


       We get from equation(6) 
    1
    ∫ f(x)dx  = w₀x₀²+w₂x₁²+w₂x₂²+E₃(x²)
   -1

  ⇒2/3 = w₀x₀²+w₁x₂²+w₂x₂² 

For f(x) = x³ :


     We get from equation(4)
1
∫ f(x)dx = w₀x₀³+w₁x₁³+w₂x₂³+E₃(x³)
-1

⇒0 = w₀x₀³+w₁x₁³+w₂x₂³+0

For f(x) = x⁴ :


     We get from equation(4) 
   1
   ∫ f(x)dx = w₀x₀⁴+w₁x₁⁴+w₂x₂⁴+E(x⁴)
  -1

 ⇒2/5 = w₀x₀⁴+w₁x₁⁴+w₂x₂⁴+0

 ⇒2/5 = w₀x₀⁴+w₁x₁⁴+w₂x₂⁴

For f(x) = x⁵ :


      We get from equation(4)
   1
   ∫ f(x)dx = w₀x₀⁵+w₁x₁⁵+w₂x₂⁵+E(x⁵)
  -1

 ⇒0 = w₀x₀⁵+w₁x₁⁵+w₂x₂⁵+0

 ⇒0 = w₀x₀⁵+w₁x₁⁵+w₂x₂⁵

Now we have six equations 

  [w₀+w₁+w₂=2

w₀x₀+w₁x₁+w₂x₂=0

w₀x₀²+w₁x₁²+w₂x₂²=2/3

w₀x₀³+w₁x₁³+w₂x₂³=0

w₀x₀⁴+w₁x₁⁴+w₂x₂⁴=2/5

w₀x₀⁵+w₁x₁⁵+w₂x₂⁵=0 ]       ..........(6)

Equations (6) are satisfied by 

  w₀=8/9 , w₁=w₂=5/9

  x₀=0 ,x₁= -x₂= √(3/5)

Hence the three _ point Gauss Legendre rule is given by 

R₃(f)= 1/9[8f(0) + 5{f(-√(3/5)+f(√(3/5)}]

Which is required rule.


Comments

Popular posts from this blog

Accuracy Of Numbers

PFAFFIAN Differential Equations And It's Solutions

Complete Integral Of Partial Differential Equations