Three _ Point Gauss_Legendre Rule
Three_Point Gauss_Legendre Rule:
We have from Gauss Quadrature Rule that
Rₙ₊₁(f) = w₀f(x₀) + w₁d(x₁) + ......+wₙf(xₙ) ...(1)
⇒R₃(f) = w₀f(x₀) + w₁f(x₁) + w₂f(x₂) .....(2)
1
Again , I(f) = ∫ f(x)dx .........(3)
-1
Now , I(f) is given by
I(f) = R₃(f) + E₃(f) ...........(4)
where E₃(f) is its error .
In order to determine the six parameters w₀, w₁,w₂,x₀,x₁,x₂ we make R₃(f) exact for all monomials if degree ≤ 5 , i.e 1,x,x²,x³,x⁴,x⁵ with E₅(xʲ) = 0 , j= 0,1,2,3,4,5
...............(5)
Equation (4) can be written as
1
∫ f(x)dx = w₀f(x₀)+w₁f(x₁)+w₂f(x₂)+E₃(xʲ)
-1
..................(6)
For f(x) = 1:
We get from equation(6)
1
∫ 1dx= w₀.1 +w₁.1+w₂.1+E₃(1)
-1
⇒2 = w₁+w₂+w₃+0
⇒ 2 = w₁+w₂+w₃
For f(x) = x :
We get from equation(4)
1
∫ xdx= w₀x₀+w₁x₁+w₂x₂+E₃(x)
-1
⇒0 = w₀x₀+w₁x₁+w₂x₂+0
⇒0 = w₀x₀+w₁x₁+w₂x₂
For f(x) = x² :
We get from equation(6)
1
∫ f(x)dx = w₀x₀²+w₂x₁²+w₂x₂²+E₃(x²)
-1
⇒2/3 = w₀x₀²+w₁x₂²+w₂x₂²
For f(x) = x³ :
We get from equation(4)
1
∫ f(x)dx = w₀x₀³+w₁x₁³+w₂x₂³+E₃(x³)
-1
⇒0 = w₀x₀³+w₁x₁³+w₂x₂³+0
1
∫ f(x)dx = w₀x₀³+w₁x₁³+w₂x₂³+E₃(x³)
-1
⇒0 = w₀x₀³+w₁x₁³+w₂x₂³+0
For f(x) = x⁴ :
We get from equation(4)
1
∫ f(x)dx = w₀x₀⁴+w₁x₁⁴+w₂x₂⁴+E(x⁴)
-1
⇒2/5 = w₀x₀⁴+w₁x₁⁴+w₂x₂⁴+0
⇒2/5 = w₀x₀⁴+w₁x₁⁴+w₂x₂⁴
For f(x) = x⁵ :
We get from equation(4)
1
∫ f(x)dx = w₀x₀⁵+w₁x₁⁵+w₂x₂⁵+E(x⁵)
-1
⇒0 = w₀x₀⁵+w₁x₁⁵+w₂x₂⁵+0
⇒0 = w₀x₀⁵+w₁x₁⁵+w₂x₂⁵
Now we have six equations
[w₀+w₁+w₂=2
w₀x₀+w₁x₁+w₂x₂=0
w₀x₀²+w₁x₁²+w₂x₂²=2/3
w₀x₀³+w₁x₁³+w₂x₂³=0
w₀x₀⁴+w₁x₁⁴+w₂x₂⁴=2/5
w₀x₀⁵+w₁x₁⁵+w₂x₂⁵=0 ] ..........(6)
Equations (6) are satisfied by
w₀=8/9 , w₁=w₂=5/9
x₀=0 ,x₁= -x₂= √(3/5)
Hence the three _ point Gauss Legendre rule is given by
R₃(f)= 1/9[8f(0) + 5{f(-√(3/5)+f(√(3/5)}]
Comments
Post a Comment
If Any Doubt Ask Me