Abel's Theorem For Power Series

Abel's Theorem For Power Series :


Statement :



                                 ∞
           If the series Σ aₙ is convergent and 
                                n=0               ∞
has the sum s , then the series Σ aₙ xⁿ is 
                                                     n=0
uniformly convergent for 0≤x≤1 and 
                                 ∞
                     lim      Σ aₙ xⁿ = s .
                    x-->1  n=0


Proof :


             Given that the series Σ aₙ is convergent , therefore we have for n≥m 

      |aₙ₊₁+ aₙ₊₂ + .......+aₙ₊ₚ| <ε , for every integral value of p>0 .

   Also , since the sequence <xₙ> is monotonic  decreasing for all values of 
x∈ [0,1] . 

Then from Abel's inequality 

|aₙxⁿ + aₙ₊₁xⁿ⁺¹j +.....aₙ₊ₚxⁿ⁺ᵖ|≤εx' ≤ ε 
                                               (x∈[0,1]) 

Therefore , the series Σ aₙxⁿ is uniformly convergent for 0≤x≤1 .

which implies  Σ aₙ xⁿ is continuous function of x∈ [0,1] and therefore ,
              ∞               ∞
    lim    Σ  aₙ xⁿ  = Σ    lim   aₙ (1-h)ⁿ
  x-->1⁻ n=0          n=0 h-->0
                                ∞
                            =  Σ aₙ = s (Proved)
                              n=0

Note :



                            ∞
  •   The series    Σ aₙ is Abel 's summable to                           n=0 
       a value s , if the associated power               series   Σ aₙ xⁿ converges for 0≤x<1  to         a function f and lim      f(x) = s . 
                                     x-->1⁻

  •  A summability method Τ , for a sequence is said to be regular if , whenever the sequence <xₙ> is also Τ- summable to s .
 

Comments

Popular posts from this blog

Accuracy Of Numbers

PFAFFIAN Differential Equations And It's Solutions

Derivation Of Composite Trapezoidal Rule