Gauss Interpolation Formula

Gauss Interpolation Formula :


             The general Newton formula or Newton's Divided Difference Interpolation Formula gives 

 y = f(x) = f(x₀)+(x-x₀)f(x₀,x₁)+(x-x₀)                                         (x-x₁)f(x₀,x₁,x₂)+(x-x₀)(x-x₁)                 (x-x₂)f(x₀,x₁,x₂,x₃)+(x-x₀)(x-x₁)(x-x₂)           (x-x₃)f(x₀,x₁,x₂,x₃,x₄)+(x-x₀)(x-x₁)(x-x₂)(x-x₃)(x-x₄)f(x₀,x₁,x₂,x₃,x₄,x₅)+(x-x₀)(x-x₁) (x-x₂)(x-x₃)(x-x₄)                                                              ×(x-x₅)f(x₀,x₁,x₂,x₃,x₄,x₅,x₆)+....

Now putting x₀=x₀ , x₁= x₀+h ,x₂= x₀-h,             x₃= x₀+2h ,x₄=x₀-2h ,x₅=x₀+3h ,x₆=x₀-3h

We immediately get 
f(x) = f(x₀)+(x-x₀)f(x₀,x₀+h)+(x-x₀)(x-x₀-h)

           f(x₀,x₀+h,x₀-h)+(x-x₀)(x-x₀-h)(x-x₀+h)

         f(x₀,x₀+h,x₀-h,x₀+2h)+(x-x₀)(x-x₀-h)                 (x-x₀+2h)f(x₀,x₀+h,x₀-h,x₀+2h,x₀-2h)

     + (x-x₀)(x-x₀-h)(x-x₀+h)(x-x₀-h)(x-x₀+2h)

       f(x₀,x₀+h,x₀-h,x₀+2h,x₀-2h,x₀+3h)+....
                                    ............(1)
Further , let u= x-x₀ /h ⇒x-x₀ = hu

when 

 f(x) = f(x₀)+hu f(x₀,x₀+h)

            + hu(hu-h) f(x₀-h,x₀+h

      +hu(hu-h)(hu+h) f(x₀-h,x₀,x₀+h,x₀+2h)

   +hu(hu-h)(hu+h)(hu-2h) 

                  f(x₀-2h,x₀-h,x₀,x₀+h,x₀+2h)

   +hu(hu-h)(hu+h)(hu-2h)(hu+2h)

        f(x₀-2h,x₀-h,x₀,x₀+h,x₀+2h,x₀+3h)+......

But , we also know that 

   f(x₀,x₀+h) = Δy₀/h 

 f(x₀-h,x₀,x₀+h) =Δ²y₋₁/2h²

f(x₀-h,x₀x₀+h,x₀+2h) = Δ³y₋₁/3!h³

f(x₀-2h,x₀-h,x₀,x₀+h,x₀+2h)= Δ⁴y₋₂/4!h⁴

f(x₀-2h,x₀-h,x₀,x₀+h,x₀+2h,x₀+3h)=

                                               Δ⁵y₋₂/5!h⁵ etc.

Now ,substituting these values in equation(1) , we readily obtain 

y= y₀+hu Δy₀/h + h²u(u-1) Δ²y₋₁/2h² +

      h³u(u-1)(u+1) Δ³y₋₁/3!h³ 

      + h⁴u(u-1(u+1)(u-2) Δ⁴y₋₂/4!h⁴

     + h⁵u(u-1)(u+1)(u-2)(u+2) Δ⁵y₋₂/5!h⁵+.....

⇒y= y₀+uc₁Δy₀ +uc₂Δ²y₋₁+(u+1)c₃Δ³y₋₁

                 +(u+1)c₄ Δ⁴y₋₂ +..........

This result is known as Gauss Forward Formula for equal intervals.


Comments

Popular posts from this blog

Derivation Of Composite Trapezoidal Rule

PFAFFIAN Differential Equations And It's Solutions

Complete Integral Of Partial Differential Equations