Gauss Interpolation Formula
Gauss Interpolation Formula :
The general Newton formula or Newton's Divided Difference Interpolation Formula gives
y = f(x) = f(x₀)+(x-x₀)f(x₀,x₁)+(x-x₀) (x-x₁)f(x₀,x₁,x₂)+(x-x₀)(x-x₁) (x-x₂)f(x₀,x₁,x₂,x₃)+(x-x₀)(x-x₁)(x-x₂) (x-x₃)f(x₀,x₁,x₂,x₃,x₄)+(x-x₀)(x-x₁)(x-x₂)(x-x₃)(x-x₄)f(x₀,x₁,x₂,x₃,x₄,x₅)+(x-x₀)(x-x₁) (x-x₂)(x-x₃)(x-x₄) ×(x-x₅)f(x₀,x₁,x₂,x₃,x₄,x₅,x₆)+....
Now putting x₀=x₀ , x₁= x₀+h ,x₂= x₀-h, x₃= x₀+2h ,x₄=x₀-2h ,x₅=x₀+3h ,x₆=x₀-3h
We immediately get
f(x) = f(x₀)+(x-x₀)f(x₀,x₀+h)+(x-x₀)(x-x₀-h)
f(x₀,x₀+h,x₀-h)+(x-x₀)(x-x₀-h)(x-x₀+h)
f(x₀,x₀+h,x₀-h,x₀+2h)+(x-x₀)(x-x₀-h) (x-x₀+2h)f(x₀,x₀+h,x₀-h,x₀+2h,x₀-2h)
+ (x-x₀)(x-x₀-h)(x-x₀+h)(x-x₀-h)(x-x₀+2h)
f(x₀,x₀+h,x₀-h,x₀+2h,x₀-2h,x₀+3h)+....
............(1)
Further , let u= x-x₀ /h ⇒x-x₀ = hu
when
f(x) = f(x₀)+hu f(x₀,x₀+h)
+ hu(hu-h) f(x₀-h,x₀+h
+hu(hu-h)(hu+h) f(x₀-h,x₀,x₀+h,x₀+2h)
+hu(hu-h)(hu+h)(hu-2h)
f(x₀-2h,x₀-h,x₀,x₀+h,x₀+2h)
+hu(hu-h)(hu+h)(hu-2h)(hu+2h)
f(x₀-2h,x₀-h,x₀,x₀+h,x₀+2h,x₀+3h)+......
But , we also know that
f(x₀,x₀+h) = Δy₀/h
f(x₀-h,x₀,x₀+h) =Δ²y₋₁/2h²
f(x₀-h,x₀x₀+h,x₀+2h) = Δ³y₋₁/3!h³
f(x₀-2h,x₀-h,x₀,x₀+h,x₀+2h)= Δ⁴y₋₂/4!h⁴
f(x₀-2h,x₀-h,x₀,x₀+h,x₀+2h,x₀+3h)=
Δ⁵y₋₂/5!h⁵ etc.
Now ,substituting these values in equation(1) , we readily obtain
y= y₀+hu Δy₀/h + h²u(u-1) Δ²y₋₁/2h² +
h³u(u-1)(u+1) Δ³y₋₁/3!h³
+ h⁴u(u-1(u+1)(u-2) Δ⁴y₋₂/4!h⁴
+ h⁵u(u-1)(u+1)(u-2)(u+2) Δ⁵y₋₂/5!h⁵+.....
⇒y= y₀+uc₁Δy₀ +uc₂Δ²y₋₁+(u+1)c₃Δ³y₋₁
+(u+1)c₄ Δ⁴y₋₂ +..........
This result is known as Gauss Forward Formula for equal intervals.
Comments
Post a Comment
If Any Doubt Ask Me