Radius Of Convergence

             Radius Of Convergence


     The number R is called the radius of convergence of the power series 
   ∞
   Σ aₙ xⁿ and the set of all x for which 
  n=0
  |x|< R i.e the open interval ]-R,R[ is called interval of convergence .

         A power series Σ aₙ xⁿ absolutely converges for values of x inside the circle of convergence and diverges outside the circle . For values of x on the circumference of the circle , the series may converge , diverge or oscillate . 

For Example :




                       ∞
  • The series Σ  aₙ xⁿ converges for |x|< 1   
                      n=0
and diverges for |x| < 1 and diverges for |x|≥1 .
                          ∞
  • The series     Σ  xⁿ/n converges for -1≤x≤1
                         n=0
and diverges else where .
          
  • The series Σ xⁿ / n² converges absolutely for |x| ≤ 1 and diverges for |x|>1 .


Expression Of The Radius Of Convergence :


         Therefore , the radius of convergence can also be found by the relation ,

            R = lim  |aₙ /aₙ₊₁ |
                n--->∞
Provided the limit exist . We can also find the radius of convergence by using the following formula ,

             R =  1 / lim  sup ⁿ√|aₙ| 
                         n-->∞


Comments

Popular posts from this blog

Derivation Of Composite Trapezoidal Rule

PFAFFIAN Differential Equations And It's Solutions

Complete Integral Of Partial Differential Equations