Non_ Linear Partial Differential Equation Of First Order

Non_ Linear Partial Differential Equation Of First Order :


         Let us consider a differential equation of the form F(x,y,p,q) = 0 in which the function F is not necessarily linear in p and q .

 Singular solution / Singular Integral :


              The equation of the envelop of the surface represented by the complete integral of a partial differential equation is called its singular solution or singular integral .

      The envelop of the surface F(x,y,a,b)=0  is obtained by eliminating a and b from the equations F = 0 , ∂F/∂a = 0,
 ∂F/∂b = 0 

Charpit's Method :


         Let us consider the equation f(x,y,p,q) = 0 then Charpit's subsidiary equations are given by 

 dx/ [∂f/∂p] = dy/ [∂f/∂q] 

                    = dz/[p(∂f/∂p) + q(∂f/∂q)]
   
                    = dp/-(∂f/∂x + p∂f/∂z)

                    = dq / -(∂f/∂y + q∂f/∂z)

Application Of Charpit's Method :


Example :


            Find the complete integrals of the following equation :

             px + qy = pq

Solution :


            Given that 

                      px + qy = pq ......(1)

  Let f(x,y,z,p,q) = px + qy - pq

   ∂f/∂x = p , ∂f/∂y = q ,∂f/∂z = 0, ∂f/∂p = x-q

    ∂f/∂q = y-p

  According to Charpit's method , corresponding subsidiary equations are 
given by 

       dx/[∂f/∂p] = dy/[∂f/∂q] 

                         = dz/[p(∂z/∂q) + q(∂f/∂q)]

                         = dp/-(∂f/∂x + p ∂f/∂z)

                         = dq/-(∂f/∂y + q∂f/∂z)

⇒dx/ x-q = dy/y-q = dz/p(x-q)+q(y-p)

                                 = dp/-(p-0) 

                                 = dq / -(q-0)

⇒dx/x-q = dy/y-p = dz/px+qy = dp/-p=dq/-q

From last two ratios we get 

⇒dp/-p = dq/-q ⇒dp/p = dq/q

Integrating both sides we get 

    ⇒∫dp/p = ∫dq/q

    ⇒log p = log q + c

    ⇒log p - log q = log a , where c = log a

    ⇒log(p/q) = log a

    ⇒p/q = a

     ⇒q = p/a ........(2)

Putting the value of q in the given equation(1) , we get 

    px + p/a y = p. p/a 

⇒ p[x+y/a] = p. p/a 

⇒x + y/a = p/a

⇒ax + y /a = p/a 

⇒ax + y = p

Putting the value of p in equation (2) we get 

        q = ax+y / a = x + y/a

Hence 

             dz = pdx + qdy 

      ⇒dz = (ax+y ) dx + (x+ y/a) dy 

      ⇒dz = (ax + y) dx + (ax+y /a) dy

      ⇒dz = 1/a [ a(ax+y)dx + (ax+y) dy]

      ⇒a dz = a(ax+y)dx + (ax+y)dy

      ⇒a dz = 2[a(ax+y)dx + (ax+y)dy] / 2

      ⇒a dz = d[(ax+y)² / 2]

Integrating , we get 

  az = (ax+y)²/2 + b (Ans)

   Which is required solution .

   

     " Don't Change The Thing , Change  "      The Way You Look At The Thing                

Comments

Popular posts from this blog

PFAFFIAN Differential Equations And It's Solutions

Cauchy Riemann Equations For Analytic Function

Complete Integral Of Partial Differential Equations