The Main Theorem

 The Main Theorem :


Statement :


               If a function f is bounded periodic with period 2π and integrable on [-π,π] , and piecewise monotonic on [-π,π], then 
              ∞
1/2 a₀ + Σ (aₙcosnξ + bₙsinnξ)
             n=1

                [1/2 [f(ξ-)+f(ξ+)], for -π<ξ<π ,
         = 
                 [1/2 [f(π-)+f(-π+)] , for ξ= ±π

  where aₙ , bₙ are Fourier coefficients of f.

Proof :



                             ∞
          Let 1/2 a₀+Σ (aₙcosnx +bₙsinnx) be
                           n=1
the Fourier Series of f , and ξ , a point of 
[-π,π] . The mth partial sum at the point ξ,
              ∞
1/2 a₀ + Σ (aₙcos nξ + bₙsin nξ)
            n=1
              π           m       π
  = 1/2π ∫ f dx + Σ 1/π ∫ f [cosnx cosnξ
            - π          n=1    -π
                                              + sinnx sinnξ]dx
               π           ∞
  = 1/2π ∫ f [1+2 Σ cos n(x-ξ) ] dx 
             -π          n=1
              π                    ∞
 = 1/2π ∫ f(x+ξ) [1+2 Σ cos nx] dx 
            -π                   n=1
            π
= 1/2π ∫ f(x+ξ) sin(m+1/2)x /sin x/2 dx
           -π
            0
= 1/2π ∫ f(x+ξ) sin(m+1/2)x / sin x/2 dx
           -π
              π
  + 1/2π ∫ f(x+ξ) sin(m+1/2)x / sinx/2 dx
              0
           π/2
 =  1/π ∫ f(-2t+ξ) sin(2m+1)t / sint dt 
            0  
             π/2
    + 1/π ∫ f(2t+ξ) sin(2m+1)t / sint dt 
              0 
   

      Proceeding to limits when m-->∞,
                ∞
  1/2 a₀ + Σ ( aₙcos nξ + bₙ sin nξ) 
               n=1 

        = 1/π [1/2 π f(ξ-)+1/2 π f(ξ+)]

       = f(ξ-) + f(ξ+) /2 , ξ∈ [-π,π]

   Thus , the Fourier Series of a (periodic) function f which is bounded , integrable and piecewise monotonic on [-π,π] , converges to 1/2 [f(-ξ)+f(ξ+)] at a point ξ , -π<ξ<π , and (using periodicity of f) to 
1/2[f(π-)+f(-π+)] at the ends , ±π .

   Hence the proof . 

 Example :


              Find the Fourier series of the periodic function f with period 2π , defined as follows :

                         { 0 , for -π< x ≤ 0,
              f(x) =  {
                          { x , for 0≤ x ≤ π

  What is the sum of the series at x = 0,±π , 4π , -5π ?

Solution :


          The function is bounded , integrable and piecewise monotonic on [-π,π] . Let us determine Fourier Coefficients 
                     π                    0              π
      a₀ = 1/π ∫ f dx = 1/π [∫ 0 . dx + ∫ x dx ]
                   -π                    -π             0

                               = π/2
                    π
     aₙ = 1/π ∫ x cos nx dx
                    0
                                          π           π
          = 1/π [|x sinnx / n| - 1/n ∫ sinnx dx ]
                                           0         0
                                        π   {0, for n even
          = 1/nπ |cosnx /n| ={
                                        0   { -2/πn²,for n odd
                 π
  bₙ = 1/π ∫ x sin nx dx = - cos nπ /n
                 0
                                     {-1/n , for n even
                              =     {
                                     { 1/n , for n odd

  In [-π,π] the point ±π are the only points of discontinuity of f . Therefore at all points of the interval other than ±π , we have

   f(x) = π/4 - 2/π {cosx/ 1² + cos3x/ 3² + ....}

               + {sinx/ 1 - sin2x /2 +sin3x /3 -...}

At x=0 where f is continuous , we get

        f(0) = π/4 -2/π {1/1² +1/3²+....}

⇒     1+1/3²+1/5²+.... = π²/8

  Because of periodicity , value of the Fourier series at x= 4π is same as at x=0

At x=±π , points of discontinuity of f , the sum of the series

             = 1/2 [f(-π)+f(-π+)] = 1/2 π

     ∴ π/2 = π/4 + 2/π {1/1²+1/3²+1/5².....}

or                 1+1/3²+1/5²+....= π²/8

  Again because of periodicity , value at -5π is same as at x = ±π . 

   Which is required solution .

               
         

Comments

Popular posts from this blog

Derivation Of Composite Trapezoidal Rule

PFAFFIAN Differential Equations And It's Solutions

Complete Integral Of Partial Differential Equations