Special Types Of First _ Order Equations (Part _2)

Special  Types  Of First Order  Differential  Equations (Part_2) :


Standard Form _2 :


                Equations not involving the independent variables i.e. equation of the form 

                  f(z,p,q) = 0          ...........(1)

       The auxiliary equations for equation(1)  are 

 dx/[∂f/∂p] = dy/[∂f/∂q]= dz/[p∂f/∂p+q∂f/∂q]

                                 = dp/-p∂f/∂z = dq/-q∂f/∂z

      ∴  dp/p = dq/q

Integrating   q = ap              ............(2)

  Where a is a constant .

 Substituting in equation(1) , we have 

         f(z,p,ap) = 0

 Now dz = pdx + qdy            ...............(3)

                = pdx + apdy

                = pd(x+ay)

Let us take X = x + ay

So that  dz/dX = p and adz/dX = q .

Hence the given equation becomes

 f(z,dz/dX,adz/dX) = 0        ...................(4)

          The equation (4) is an ordinary differential equation of first order and can easily be  solved . The complete integral is thus obtained by replacing X by (x + ay) .

Examples Related To This Type Of Standard Form :


Example_1 :


        Find the complete integral of the equation 

                  p³ + q³ = 27 z 

Solution :


          Given that

                         p³ + q³ = 27 z ...........(1)

       Let us put p = dz/dX and q = a dz/dX in equation (1) ,

   where X = x + ay .

∴ (1+a³)(dz / dX)³ = 27 z

 ⇒ dz / dX = 3 z^1/3 / (1+a³)^1/3

 ⇒ z^-1/3 dz = 3dX / (1+a³)^1/3

Integrating , 3/2 z^2/3 (1+a³)^1/3 

                                        = 3X + constant

   ⇒z^2/3 (1+a³)^1/3 = 2(X+c)

   ⇒ z² (1+a³) = 8(x + ay + c)³

 Which is the required solution .

Example_2 :


             Find the complete integral of

                      p²x² = z(z- qy)

Solution :


          Given that ,

                    p²x² = z(z - qy) ...............(1)

   Let us put 

                   u = log x 
and            v = log y ,

Then       p = ∂z/∂x

                   = ∂z/∂u . ∂u/∂x = 1/x ∂z/∂u

and          q = ∂z/∂y 

                    = ∂z/∂v . ∂v/∂z = 1/y ∂z/∂v

Substituting in equation (1) , we get 

              (∂z/∂u)² = z(z- ∂z/∂v)

or             P² = z(z - Q) [standard form 2]
                                                  ...........(2)

where      P = ∂z/∂u and Q = ∂z/∂v

Now replacing P by dz/dX and Q by adz/dX , 

     where X = u + av , we get 

        (dz/dX)² = z² - za dz/dX

⇒     (dz/dX)² + az dz/dX - z² = 0

⇒    dz/dX = -az ± √(a²z²+4z²) / 2

                   = z/2 [- a ± √(a²+4)

⇒2/z dz = [-a + √(a²+4 ) dX
                                     [taking +ve sign].

Integrating , 

       2 log z = [-a + √(a²+4 )]X + 2 log c

                  = [-a + √(a²+4 )](u+av) + 2 log c

                  = [-a + √(a²+4 )]log x 

                    + a[-a + √(a²+4 )]log y + 2 log c

             = 2 A log x + 2(1-A²) log y + 2 log c 

where     2A = - a + √(a² + 4 )

∴               z = cxᴬy^(1 - A²)

    Which is the required solution .

         These are some problems which better explain the standard form .

               "Tough Times Don't Last"
                    Tough  People Do!
    

Comments

Popular posts from this blog

PFAFFIAN Differential Equations And It's Solutions

Cauchy Riemann Equations For Analytic Function

Complete Integral Of Partial Differential Equations