Confluent Hypergeometric Function
Confluent Hypergeometric Function:
Let us put x = z/β or z= βx in the hypergeometric equation . Then the equation assumes the form
z(1- z/β)d²y/dz² +
[γ-(1+α+β)z/β]dy/dz -αy = 0
There are three regular singularities , one at z= 0 , another given by z= β , and also at z=∞.
When β-->∞ , we get the equation
z = d²y/dz² + (γ-z)dy/dz -αy = 0 .......(1)
The equation is known as the Confluent Hypergeometric Equation following to confluence of two singularities β,∞ when β-->∞ .
Again putting x= z/β in the hypergeometric series we obtain
1+ α.βz/1.γβ + α(α+1).β(β+1)z²/1.2.γ(γ+1)β²+..
= 1+ αz/1.γ + α(α+1)(1+ 1/β)z²/1.2.γ(γ+1)+...
When β-->∞ this series reduces to
1+αz/1.γ + α(α+1)z²/2!γ(γ+1) + ....
which can be put as
∞
Σ (α)ₖ zᵏ/k! (γ)ₖ or simply F(α;γ;z) . ...(2)
k=0
This function is called Confluent Hypergeometric Function .
If we put γ= α and z= x in equation(2) , we have
∞ ∞
F(α;α;x) = Σ (α)ₖxᵏ/k!(α)ₖ = Σ xᵏ/k! = eˣ
k=0 k=0
From the definition of confluent hypergeometric function it can be shown that
d/dx [F(α;γ;x)] = α/γ F(α+1;γ+1;x) ......(3)
∞
Since F(α;γ;x) = 1+ Σ (α)ₖ xᵏ /k!(γ)ₖ .
k=1
differentiating with respect to x , we get
∞
d/dx F(α;γ;x) = Σ (α)ₖ xᵏ⁻¹/(k-1)!(γ)ₖ
k=1
Writing k-1 = n , we obtain
∞
d/dx F(α;γ;x) = Σ (α)ₙ₊₁ xⁿ / n!(γ)ₙ₊₁
k=1
∞
= Σ α(α+1)...(α+n)xⁿ/n!γ(γ+1)..(γ+n)
n=0
∞
= α/γ Σ (α+1)ₙxⁿ/n!(γ+1)ₙ
n=0
= α/γ F(α+1;γ+1;x).
From the definition of confluent hypergeometric function it can be shown that
d/dx [F(α;γ;x)] = α/γ F(α+1;γ+1;x) ......(3)
∞
Since F(α;γ;x) = 1+ Σ (α)ₖ xᵏ /k!(γ)ₖ .
k=1
differentiating with respect to x , we get
∞
d/dx F(α;γ;x) = Σ (α)ₖ xᵏ⁻¹/(k-1)!(γ)ₖ
k=1
Writing k-1 = n , we obtain
∞
d/dx F(α;γ;x) = Σ (α)ₙ₊₁ xⁿ / n!(γ)ₙ₊₁
k=1
∞
= Σ α(α+1)...(α+n)xⁿ/n!γ(γ+1)..(γ+n)
n=0
∞
= α/γ Σ (α+1)ₙxⁿ/n!(γ+1)ₙ
n=0
= α/γ F(α+1;γ+1;x).
Example:
Prove that
αF(α+1;γ+1;x) - γF(α;γ;x)
= (α-γ)F(α;γ+1;x).
Solution :
L.H.S =
∞
Σ [α(α+1)ₖxᵏ/k!(γ+1)ₖ- γ(α)ₖxᵏ/k!(γ)ₖ]
k=0
∞
= Σ (α)ₖxᵏ[(α+k)-γ(γ+1)ₖ/(γ)ₖ] / k!(γ+1)ₖ
k=0
Now γ(γ+1)ₖ/(γ)ₖ =
γ(γ+1)....(γ+k)/ γ(γ+1)..(γ+k-1) =γ+k.
∞
Hence the L.H.S = Σ (α)ₖxᵏ(α+k-γ-k)/k!(γ+1)ₖ
k=0
∞
= (α-γ)Σ (α)ₖxᵏ/k!(γ+1)ₖ
k=0
= (α-γ)F(α;γ+1;x) .(Proved)
Comments
Post a Comment
If Any Doubt Ask Me