The Laplace Transformation

The Laplace Transformation:


   In recent years , in the solution of differential equations much use has been made of what are known as "Operational Methods". Such methods have wide applications in science and engineering and represent a large field for advanced study . 



This method consists of a procedure of solving differential equations where the boundary  or initial conditions are automatically satisfied in the course of the solution . The Laplace transformation is but one of many possible operational methods of solving linear differential equations .

Definition:


            Given a function f(t) of a real variable t>0 , if we multiply it by e⁻ᵖᵗ and with respect to t between the limits 0 and ∞, the result is a function of p, say f̅(p). This function f̅(p) is called the Laplace Transformation of f(t) , also written as L{f(t)}. Thus
                              ∞
    L{f(t)} ≡ f̅(p) = ∫ e⁻ᵖᵗf(t) dt ,
                              0

  provided the integral exist. Here p, in general , is a complex variable. However, in special cases it may be either real or imaginary . We shall restrict p to assume only real values . 

Laplace Transforms Of Some Functions:


    (i) If f(t) = 1,

from definition we get 
               ∞                                   ∞
    f̅(p) = ∫ e⁻ᵖᵗ .1 dt = [-1/p e⁻ᵖᵗ]  = 1/p
              0                                     0

Hence L{1} = 1/p .
                      ∞
    (ii) L{t} = ∫ e⁻ᵖᵗ t dt 
                     0
                                       ∞           ∞
                  = [-1/p e⁻ᵖᵗ t]  + 1/p ∫ e⁻ᵖᵗ dt 
                                       0           0

                  = 1/p² .
                                           ∞
since , lim te⁻ᵖᵗ = 0 and ∫ e⁻ᵖᵗ dt = 1/p .
          t-->∞                        0

           
                            ∞
      (iii)  L{tⁿ} = ∫ e⁻ᵖᵗ tⁿ dt ,
                           0

    where n is a positive integer 
                                          ∞            ∞
                    = [-1/p e⁻ᵖᵗ tⁿ]  + n/p ∫ e⁻ᵖᵗ tⁿ⁻¹ dt
                                           0           0

                   = n/p L{tⁿ⁻¹}.

The successive application of the formula (iii) gives 

        L{tⁿ} = n!/pⁿ⁺¹ .


                            ∞
       (iv) L{eᵃᵗ}= ∫ e⁻ᵖᵗ eᵃᵗ dt 
                            0
                             ∞                                        ∞
                          = ∫ e⁻ᵖᵗ⁺ᵃᵗ dt = [-e⁻ᵖᵗ⁺ᵃᵗ/p-a]
                            0                                          0

                          = 1/p-a


                                  ∞
       (v) L{cos at } = ∫ e⁻ᵖᵗ cos at dt
                                 0
                                    ∞
                          = 1/2 ∫ e⁻ᵖᵗ[eⁱᵃᵗ+e⁻ⁱᵃᵗ]dt
                                   0
                              ∞                           ∞
                    = 1/2 ∫ e⁻ᵖᵗ⁺ⁱᵃᵗ dt +1/2  ∫ e⁻ᵖᵗ⁻ⁱᵃᵗdt
                             0                            0

                   = 1/2(p-ia) + 1/2(p+ia) = p/p²+a²

Similarly, 

    L{sin at } = p/p²+a² .






Comments

Popular posts from this blog

Accuracy Of Numbers

PFAFFIAN Differential Equations And It's Solutions

Complete Integral Of Partial Differential Equations