Unit Impulse Function

Unit Impulse Function 


              The above figure shows a function which has a zero value when t is negative , rises instantaneously to a value 1/t₀ when 0<t<t₀ , and is zero thereafter.

                 If we let t₀--> 0 , this function  tends towards infinity as t₀--> 0, but width decreases inversely with the magnitude ; hence area under the curve remains finite .
The unit impulse function is represented by δ(t) .

 Among Physicists, the unit impulse function is referred to as the 'Dirac δ-function ' after the name of great Physicist Dirac , who is the first to use this function in systematic manner .  The Dirac δ - function at the point t=a as in above figure is represented by δ(t-a) . Thus 


                     {0 for t < a
        δ(t-a) ={ 1/t₀ for a<t<a+t₀ 
                     {0 for t> a+t₀              .......(1)

Where t₀ --> 0 in the limit . 

     The Laplace transform of δ(t-a) is 
                            ∞
        L{δ(t-a)} = ∫ e⁻ᵖᵗ δ(t-a) dt 
                           0
         a                                   a+t₀
      = ∫ e⁻ᵖᵗ δ(t-a) dt + lim   ∫ e⁻ᵖᵗ δ(t-a) dt
         0                          t₀-->0 a
              ∞
          +  ∫ e⁻ᵖᵗ δ(t-a) dt 
            a+t₀
                             a+t₀
            = lim 1/t₀  ∫  e⁻ᵖᵗ dt 
                              a
                                             a+t₀
            = lim 1/t₀ [-1/p e⁻ᵖᵗ ]
                                              a

          = e⁻ᵖᵃ/p  lim   1-e⁻ᵖᵗ / t₀ = e⁻ᵖᵃ  .....(2)
                        t₀-->0


If you have any doubt in any mathematical problems then you can comment me and I will try my level best to solve your problem.

Comments

Popular posts from this blog

Accuracy Of Numbers

PFAFFIAN Differential Equations And It's Solutions

Derivation Of Composite Trapezoidal Rule