Unit Impulse Function

Unit Impulse Function 


              The above figure shows a function which has a zero value when t is negative , rises instantaneously to a value 1/t₀ when 0<t<t₀ , and is zero thereafter.

                 If we let t₀--> 0 , this function  tends towards infinity as t₀--> 0, but width decreases inversely with the magnitude ; hence area under the curve remains finite .
The unit impulse function is represented by δ(t) .

 Among Physicists, the unit impulse function is referred to as the 'Dirac δ-function ' after the name of great Physicist Dirac , who is the first to use this function in systematic manner .  The Dirac δ - function at the point t=a as in above figure is represented by δ(t-a) . Thus 


                     {0 for t < a
        δ(t-a) ={ 1/t₀ for a<t<a+t₀ 
                     {0 for t> a+t₀              .......(1)

Where t₀ --> 0 in the limit . 

     The Laplace transform of δ(t-a) is 
                            ∞
        L{δ(t-a)} = ∫ e⁻ᵖᵗ δ(t-a) dt 
                           0
         a                                   a+t₀
      = ∫ e⁻ᵖᵗ δ(t-a) dt + lim   ∫ e⁻ᵖᵗ δ(t-a) dt
         0                          t₀-->0 a
              ∞
          +  ∫ e⁻ᵖᵗ δ(t-a) dt 
            a+t₀
                             a+t₀
            = lim 1/t₀  ∫  e⁻ᵖᵗ dt 
                              a
                                             a+t₀
            = lim 1/t₀ [-1/p e⁻ᵖᵗ ]
                                              a

          = e⁻ᵖᵃ/p  lim   1-e⁻ᵖᵗ / t₀ = e⁻ᵖᵃ  .....(2)
                        t₀-->0


If you have any doubt in any mathematical problems then you can comment me and I will try my level best to solve your problem.

Comments

Popular posts from this blog

Derivation Of Composite Trapezoidal Rule

PFAFFIAN Differential Equations And It's Solutions

Complete Integral Of Partial Differential Equations