Unit Step Function
Unit Step Function :
A unit step function is a function which has a zero value for t≤t₀ and then rises instantaneously to a sustained unity value.
This is shown in the figure below. In electric circuit , and in mechanical system it could represent a force suddenly impressed on the system .
This unit step function starting at zero time will be designated by u(t) , and that starting at time t₀ is u(t-t₀) . Thus
{ 0 for 0<t≤t₀
u(t-t₀) ={
{ 1 for t>t₀ .....(1)
The Laplace transform of unit step function is
∞
L{u(t-t₀)} = ∫ e⁻ᵖᵗ u(t-t₀) dt
0
∞ ∞
= ∫ e⁻ᵖᵗ u(t-t₀) dt + ∫ e⁻ᵖᵗ u(t-t₀) dt
0 t₀
∞ ∞
= ∫ e⁻ᵖᵗ dt = [-1/p e⁻ᵖᵗ]
t₀ t₀
= 1/p e⁻ᵖᵗ₀ ......(2)
When t₀= 0 i.e., the function instantaneously takes the value unity at zero time , then
L{u(t)} = 1/p
Which is the function.
When t₀= 0 i.e., the function instantaneously takes the value unity at zero time , then
L{u(t)} = 1/p
Which is the function.
Example _1:
Express the square wave shown in the figure below in terms of unit step function , and obtain its Laplace transform .
Solution :
The wave can be written in terms of unit step functions as
f(t) = u(t)- 2u(t-a) + 2u(t-2a) - 2u(t-3a)+...
Assuming that term wise integration is permissible and using (2) , we obtain
f̅(p) = 1/p - 2e⁻ᵃᵖ/p + 2e⁻²ᵃᵖ/p - 2e⁻³ᵃᵖ/p +...
= 1/p [1-2e⁻ᵃᵖ(1-e⁻ᵃᵖ + e⁻²ᵃᵖ - e⁻³ᵃᵖ+...)]
= 1/p [1 - 2e⁻ᵃᵖ/1+e⁻ᵃᵖ]
the expression in parentheses () is a geometric series .
Hence f̅(p) = 1/p (1-e⁻ᵃᵖ / 1+e⁻ᵃᵖ)
= 1/p[ e^-ap/2 (e^ap/2 - e^-ap/2)/
e^-ap/2 (e^ap/2 + e^-ap/2)
= 1/p (e^ap/2 - e^-ap/2) /
(e^ap/2 + e^-ap/2)
= 1/p (2sinh ap/2) / (2cosh ap/2)
= 1/p tanh ap/2 . (a>0 , p>0),
Theorem _1:
If {f(t)} = f̅(p), then for a>0,
L{u(t-a)f(t-a)} = e⁻ᵃᵖ f̅(p) .
Proof :
By definition
∞
L{u(t-a) f(t-a)} = ∫ e⁻ᵖᵗ u(t-a) f(t-a) dt
0
a ∞
= ∫e⁻ᵖᵗ f(t-a).0dt + ∫ e⁻ᵖᵗ f(t-a).1dt
0 a
∞
= ∫ e⁻ᵖᵗ f(t-a) dt
a
In the last integral write x = t-a
Then
∞ ∞
∫ e⁻ᵖᵗ f(t-a) dt = ∫ e^-p(x+a) f(x) dx
a 0
∞
= e⁻ᵖᵃ ∫ e⁻ᵖˣ f(x) dx
0
= e⁻ᵖᵃ f̅(p)
Hence, L{u(t-a) f(t-a)} = e⁻ᵖᵃL{f(t)}=e⁻ᵃᵖ f̅(p)
Example_2 :
What function has Laplace transform
e⁻ᵖ/p² ?
Solution :
We know that L{t} = 1/p²
Hence by Theorem_1
e⁻ᵖ/p² = L{u(t-1)(t-1)} .
Which is the required solution ,
Comments
Post a Comment
If Any Doubt Ask Me