Fourier Transform Understanding- Mathquery

Definition Of Fourier Transform:


 
image is based on human ability to describe math
      The Fourier Transform of a function f denoted as f̂ is defined by 
                                ∞
      f̂ (ξ) = 1/√(2π ) ∫ f(x) e ^ -iξx dx    .....(1)
                               -∞

         whenever the integral on the right exists . It is obvious that the integral on the right of (1) exists if
                          ∞
                           ∫ |f(x)| dx    exists .
                         -∞

  If the fourier transform f̂ of a function f is known the function f can be obtained by the following formula , known as the inversion formula :
                              ∞
   f(x) = 1/√(2π )   ∫ f̂(ξ) e^iξx dξ   ..............(2)
                             -∞

   Sometimes it is convenient to use the operator notation F and F⁻¹ for the Fourier transform and its inverse i.e.

         F(f) = f̂     and  F⁻¹(f̂) = f .

   The following important properties of the Fourier transform can be easily verified :

(i) Linearity Of The Transform and its              inverse   

related to mathematics society

   If f, g are any transformable functions and a and b are real numbers then 

  F(af + bg) = a F(f) + b F(g)

 F⁻¹(af̂ + bĝ) = a F⁻¹(f̂) + b F⁻¹(ĝ) .

(ii) Transform Of nth Derivative 

image is relevant to mathematics post

   If fⁿ⁻¹(x) , fⁿ⁻²(x),.....f(x) all approach zero as x--> ±∞ , then 

      F(f)ⁿ(x) = (iξ)ⁿ f̂(ξ)

and F((-ix)ⁿf(x)) = f̂ ⁿ(ξ) 

(iii) Shift Formula .

Mathematical Theory

      F(f(ax-b)) = 1/|a| e^ -iξb/a f̂(ξ/a)

and F(eⁱᵃˣ f(x)) = f̂(ξ-a) 

(iv) Transform Of The Convolution .

Mathematical Theory

     Defining the Fourier convolution , f*g of f(x) and g(x) as 
                    ∞
   f*g(-x₀) = ∫ f(x₀-x) g(x) dx
                   -∞

  we have   F(f*g) = f̂ * ĝ   

  Here * stands for function composition .

   If f(x) is even or it is only defined over 0<x<∞ in which case we can extend it so as to be even , then we observe that 
    ∞
    ∫ f(x) cos ξx dx = 0
  -∞

 Hence the Fourier transform reduces to 
                         ∞
  f̂(ξ) = i/√(2π ) ∫ f(x) sin ξx dx 
                        -∞
                            ∞
         = -i √(2/π ) ∫ f(x) sin ξx dx
                            0

   Thus if f(x) is given for 0<x<∞ its Fourier sine transform is defined as
                             ∞
     Fₛ(f) = √(2/π ) ∫ f(x) sin ξx dx ,
                             0

and the inversion formula is 
                           ∞
    f(x) = √(2/π ) ∫ sin (ξx) Fₛ(f) dξ
                           0

 Similarly , the cosine transform is defined as  
                             ∞
    Fₒ[f] = √(2/π ) ∫ f(x) cos ξx dx 
                             0

and the inversion formula becomes 
                          ∞
   f(x) = √(2/π)  ∫ cos ξx Fₒ (f) dx
                          0

 Sine and Cosine transforms are useful in treating problems with boundary condition at x= 0 and involving only derivatives of even order as is seen from the properties :

  Fₛ[f''] = f(0) ξ - ξ² Fₒ[f]

  Fₒ[f"] = -f'(0) - ξ²Fₒ[f] , 

 Provided f(x) and f'(x) -->0 as x-->∞

 Thus  sine transform is useful  when f(0) is given and cosine transform is usual when f'(0) is known .
Mathematical Theory



                   Motivational Quote

       " A Thought Is An Idea In Transit " 

                                  By Pythagoras 

             

Comments

Popular posts from this blog

Derivation Of Composite Trapezoidal Rule

PFAFFIAN Differential Equations And It's Solutions

Complete Integral Of Partial Differential Equations