Cauchy's Integral Theorem | Mathquery

Cauchy's Integral Theorem:


Cauchy's Integral Theorem Statement

Statement :


Cauchy's Integral Theorem Statement

      The theorem is usually formulated for closed paths as follows :

       Let U be an open subset of C which is simply connected . Let f: U-->C be a holomorphic  function , and let γ be a rectifiable path in U whose start point is equal to its end point . Then

                        ∮ f(z) dz = 0
                        γ

Proof :

Cauchy's Integral Theorem Statement

      Let us assume that the  partial derivatives  of a holomorphic function are continuous , the Cauchy Integral Theorem can be proved as direct sequence of    Green's Theorem and the fact that the real and imaginary parts of f = u + i v must satisfy the Cauchy - Riemann equations in the region bounded by γ , and moreover in the open neighbourhood U of this region.
Cauchy's Integral Theorem Proof

             Cauchy provided this proof , but it was later proved by Goursat without requiring techniques from vector calculus , or the continuity of partial derivatives .

            We can break the integrand f , as well as the differential dz into their real and imaginary components .

                    f = u + i v   ..............(1)

                  dz = dx + i dy .............(2)

            Then we have 

 ∮ f(z) dz = ∮ (u+iv)(dx+idy)
 γ                γ

                 = ∮(u dx - v dy)+i∮(v dx + u dy)
                    γ                         γ             ........(3)

      By Green's Theorem , we then replace the integrals around the closed contour γ with an area integral throughout the domain D that is enclosed by γ as follows.

 ∮(u dx - v dy) = ∫∫(-∂v/∂x - ∂u/∂y) dx dy
 γ                            D                          ............(4)

 ∮(v dx + u dy) = ∫∫(∂u/∂x - ∂v/∂y) dx dy
 γ                             D                         ............(5)

  But the real and imaginary parts of a function holomorphic in the domain D , u and v must satisfy the Cauchy-Riemann equations so ,

               ∂u/∂x = ∂v/∂y ..............(6)
               ∂u/∂y = -∂v/∂x .............(7)
Cauchy's Integral Theorem Proof

    We therefore find that both integrands are zero

     ∫∫(-∂v/∂x - ∂u/∂y) dx dy
      D

                             = ∫∫(∂u/∂y - ∂u/∂y) dx dy =0
                                  D                      ...........(8)

     ∫∫(∂u/∂x - ∂v/∂y) dx dy
      D
                            = ∫∫(∂u/∂x - ∂u/∂x) dx dy
                                 D                      .............(9)

 This gives the desired result

                     ∮ f(z) dz = 0           ...............(10)
                    γ                                (Proved)

Example :

Cauchy's Integral Theorem Proof

       Prove that ∫ eᶻ dz = 0
                          c

Solution :

Cauchy's Integral Theorem Proof

      Here f(z) = eᶻ = e^(x+iy)   (∵ In complex 
                                                       z = x+iy)
                               = e^x . e^ iy

                               = e^x (cos y + i sin y)
                                              (∵ polar form of 
                                               complex function)

                              = e^x cos y + i e^x sin y

                              = u + iv

where   u = e^x cosy           v= e^x sin y

      ∂u/∂x = e^x cosy           ∂v/∂x = e^x sin y

      ∂u/∂y = -e^x sin y          ∂v/∂y = e^x cos y

∴   ∂u/∂x = ∂v/∂y    and      ∂u/∂y = - ∂v/∂x

  ⇒ f(z) = eᶻ  satisfy C-R equation

  ⇒  eᶻ is analytic for all z .

 So ∫ eᶻ dz = 0 by Cauchy's Integral Theorem
      c

  Which is the required solution .

About Scientist :-


Cauchy's Integral Theorem Proof

         Baron Augustin-Louis Cauchy (21 August 1789 – 23 May 1857) was a French mathematician, engineer, and physicist who made pioneering contributions to several branches of mathematics, including mathematical analysis and continuum mechanics .For More

Comments

Popular posts from this blog

Accuracy Of Numbers

PFAFFIAN Differential Equations And It's Solutions

Derivation Of Composite Trapezoidal Rule